Ablation in the context of "Ablation zone"

Play Trivia Questions online!

or

Skip to study material about Ablation in the context of "Ablation zone"

Ad spacer

⭐ Core Definition: Ablation

Ablation (Latin: ablatio – removal) is the removal or destruction of something from an object by vaporization, chipping, erosive processes, or by other means. Examples of ablative materials are described below, including spacecraft material for ascent and atmospheric reentry, ice and snow in glaciology, biological tissues in medicine and passive fire protection materials.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Ablation in the context of Glaciers

A glacier (US: /ˈɡlʃər/; UK: /ˈɡlæsiə/ or /ˈɡlsiə/) is a persistent body of dense ice, a form of rock, that is constantly moving downhill under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

On Earth, 99% of glacial ice is contained within vast ice sheets (also known as "continental glaciers") in the polar regions, but glaciers may be found in mountain ranges on every continent other than the Australian mainland, including Oceania's high-latitude oceanic island countries such as New Zealand. Between latitudes 35°N and 35°S, glaciers occur only in the Himalayas, Andes, and a few high mountains in East Africa, Mexico, New Guinea and on Zard-Kuh in Iran. With more than 7,000 known glaciers, Pakistan has more glacial ice than any other country outside the polar regions. Glaciers cover about 10% of Earth's land surface. Continental glaciers cover nearly 13 million km (5 million sq mi) or about 98% of Antarctica's 13.2 million km (5.1 million sq mi), with an average thickness of ice 2,100 m (7,000 ft). Greenland and Patagonia also have huge expanses of continental glaciers. The volume of glaciers, not including the ice sheets of Antarctica and Greenland, has been estimated at 170,000 km.

↑ Return to Menu

Ablation in the context of Atmospheric entry

Atmospheric entry (sometimes listed as Vimpact or Ventry) is the movement of an object from outer space into and through the gases of an atmosphere of a planet, dwarf planet, or natural satellite. Atmospheric entry may be uncontrolled entry, as in the entry of astronomical objects, space debris, or bolides. It may be controlled entry (or reentry) of a spacecraft that can be navigated or follow a predetermined course. Methods for controlled atmospheric entry, descent, and landing of spacecraft are collectively termed as EDL.

Objects entering an atmosphere experience atmospheric drag, which puts mechanical stress on the object, and aerodynamic heating—caused mostly by compression of the air in front of the object, but also by drag. These forces can cause loss of mass (ablation) or even complete disintegration of smaller objects, and objects with lower compressive strength can explode.

↑ Return to Menu

Ablation in the context of Meteor shower

A meteor shower is a celestial event in which a number of meteors are observed to radiate, or originate, from one point in the night sky. These meteors are caused by streams of cosmic debris called meteoroids entering Earth's atmosphere at extremely high speeds on parallel trajectories. Most meteors are smaller than a grain of sand, so almost all of them disintegrate and never hit the Earth's surface. Very intense or unusual meteor showers are known as meteor outbursts and meteor storms, which produce at least 1,000 meteors an hour, most notably from the Leonids. The Meteor Data Centre lists over 900 suspected meteor showers of which about 100 are well established. Several organizations point to viewing opportunities on the Internet. NASA maintains a daily map of active meteor showers.

Historically, meteor showers were regarded as an atmospheric phenomenon. In 1794, Ernst Chladni proposed that meteors originated in outer space. The Great Meteor Storm of 1833 led Denison Olmsted to show it arrived as a cloud of space dust, with the streaks forming a radiant point in the direction of the constellation of Leo. In 1866, Giovanni Schiaparelli proposed that meteors came from comets when he showed that the Leonid meteor shower shared the same orbit as the Comet Tempel. Astronomers learned to compute the orbits of these clouds of cometary dust, including how they are perturbed by planetary gravity. Fred Whipple in 1951 proposed that comets are "dirty snowballs" that shed meteoritic debris as their volatiles are ablated by solar energy in the inner Solar System.

↑ Return to Menu

Ablation in the context of List of glaciers

A glacier (US: /ˈɡlʃər/ GLAY-shər) or (UK: /ˈɡlæsiə/) is a persistent body of dense ice that is constantly moving under its own weight; it forms where the accumulation of snow exceeds its ablation (melting and sublimation) over many years, often centuries. Glaciers slowly deform and flow due to stresses induced by their weight, creating crevasses, seracs, and other distinguishing features. Because glacial mass is affected by long-term climate changes, e.g., precipitation, mean temperature, and cloud cover, glacial mass changes are considered among the most sensitive indicators of climate change. There are about 198,000 to 200,000 glaciers in the world.

↑ Return to Menu

Ablation in the context of Accumulation zone

On a glacier, the accumulation zone is the area above the firn line, where snowfall accumulates and exceeds the losses from ablation, (melting, evaporation, and sublimation). The annual equilibrium line separates the accumulation and ablation zone annually. The accumulation zone is also defined as that part of a glacier's surface, usually at higher elevations, on which there is net accumulation of snow, which subsequently turns into firn and then glacier ice. Part of the glacier where snow builds up and turns to ice moves outward from there.

↑ Return to Menu

Ablation in the context of PSR J0952–0607

PSR J0952−0607 is a massive millisecond pulsar in a binary system, located between 3,200–5,700 light-years (970–1,740 pc) from Earth in the constellation Sextans. As of 2022, it holds the record for being the most massive neutron star known, with a mass 2.35±0.17 times that of the Sun—potentially close to the Tolman–Oppenheimer–Volkoff mass upper limit for neutron stars. The pulsar rotates at a frequency of 707.31 Hz (a period of 1.4137 ms), making it the second-fastest-spinning pulsar known, and the fastest-spinning pulsar known within the Milky Way.

PSR J0952−0607 was discovered by the Low-Frequency Array (LOFAR) radio telescope during a search for pulsars in 2016. It is classified as a black widow pulsar, a type of pulsar harboring a closely-orbiting substellar-mass companion that is being ablated by the pulsar's intense high-energy solar winds and gamma-ray emissions. The pulsar's high-energy emissions have been detected in gamma-ray and X-ray wavelengths.

↑ Return to Menu