Stratus cloud in the context of "Radiation fog"

Play Trivia Questions online!

or

Skip to study material about Stratus cloud in the context of "Radiation fog"

Ad spacer

⭐ Core Definition: Stratus cloud

Stratus clouds are low-level clouds characterized by horizontal layering with a uniform base, as opposed to convective or cumuliform clouds formed by rising thermals. The term stratus describes flat, hazy, featureless clouds at low altitudes varying in color from dark gray to nearly white. The word stratus comes from the Latin prefix Strato-, meaning "layer" or "sheet". Stratus clouds may produce a light drizzle or a small amount of snow. These clouds are essentially above-ground fog formed either through the lifting of morning fog or through cold air moving at low altitudes. Some call these clouds "high fog" for their fog-like form.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Stratus cloud in the context of Radiation fog

Fog is a visible aerosol consisting of tiny water droplets or ice crystals held in the air near the Earth's surface. Fog can be considered a type of low-lying cloud usually resembling stratus and is heavily influenced by nearby bodies of water, topography, and wind conditions. In turn, fog affects many human activities, such as shipping, travel, and warfare.

Fog appears when water vapor (water in its gaseous form) condenses. During condensation, molecules of water vapor combine to make tiny water droplets that hang in the air. Sea fog, which shows up near bodies of saline water, is formed as water vapor condenses on bits of salt. Fog is similar to, but less transparent than, mist.

↓ Explore More Topics
In this Dossier

Stratus cloud in the context of Fog

Fog is a visible aerosol consisting of tiny water droplets or ice crystals suspended in the air near the Earth's surface. Fog can be considered a type of low-lying cloud usually resembling stratus and is heavily influenced by nearby bodies of water, topography, and wind conditions. In turn, fog affects many human activities, such as shipping, travel, and warfare.

Fog appears when water vapor (water in its gaseous form) condenses. During condensation, molecules of water vapor combine to make tiny water droplets that hang in the air. Sea fog, which shows up near bodies of saline water, is formed as water vapor condenses on bits of salt. Fog is similar to, but less transparent than, mist.

↑ Return to Menu

Stratus cloud in the context of Drizzle

Drizzle is a light precipitation which consists of liquid water drops that are smaller than those of rain – generally smaller than 0.5Β mm (0.02Β in) in diameter. Drizzle is normally produced by low stratiform clouds and stratocumulus clouds. Precipitation rates from drizzle are on the order of a millimetre (0.04Β in) per day or less at the ground. Owing to the small size of drizzle drops, under many circumstances drizzle largely evaporates before reaching the surface, and so may be undetected by observers on the ground. The METAR code for drizzle is DZ and for freezing drizzle is FZDZ.

↑ Return to Menu

Stratus cloud in the context of Weather front

A weather front is a boundary separating air masses for which several characteristics differ, such as air density, wind, temperature, and humidity. Disturbed and unstable weather due to these differences often arises along the boundary. For instance, cold fronts can bring bands of thunderstorms and cumulonimbus precipitation or be preceded by squall lines, while warm fronts are usually preceded by stratiform precipitation and fog. In summer, subtler humidity gradients known as dry lines can trigger severe weather. Some fronts produce no precipitation and little cloudiness, although there is invariably a wind shift.

Cold fronts generally move from west to east, whereas warm fronts move poleward, although any direction is possible. Occluded fronts are a hybrid merge of the two, and stationary fronts are stalled in their motion. Cold fronts and cold occlusions move faster than warm fronts and warm occlusions because the dense air behind them can lift as well as push the warmer air. Mountains and bodies of water can affect the movement and properties of fronts, other than atmospheric conditions. When the density contrast has diminished between the air masses, for instance after flowing out over a uniformly warm ocean, the front can degenerate into a mere line which separates regions of differing wind velocity known as a shear line. This is most common over the open ocean.

↑ Return to Menu

Stratus cloud in the context of Warm front

A warm front is a density discontinuity located at the leading edge of a homogeneous warm air mass, and is typically located on the equator-facing edge of an isotherm gradient. Warm fronts lie within broader troughs of low pressure than cold fronts, and move more slowly than the cold fronts which usually follow because cold air is denser and less easy to remove from the Earth's surface. This also forces temperature differences across warm fronts to be broader in scale. Clouds ahead of the warm front are mostly stratiform, and rainfall generally increases as the front approaches. Fog can also occur preceding a warm frontal passage. Clearing and warming is usually rapid after frontal passage. If the warm air mass is unstable, thunderstorms may be embedded among the stratiform clouds ahead of the front, and after frontal passage thundershowers may continue. On weather maps, the surface location of a warm front is marked with a red line of semicircles pointing in the direction of travel.

↑ Return to Menu

Stratus cloud in the context of Sea of clouds

A sea of clouds is an overcast layer of stratocumulus clouds, as viewed from above, with a relatively uniform top which shows undulations of very different lengths resembling waves on the sea. A sea of fog is formed from stratus clouds or fog and does not show undulations.

In both cases, the phenomenon looks very similar to the open ocean. The comparison is even more complete if some mountain peaks rise above the clouds, thus resembling islands.

↑ Return to Menu