Steradian in the context of "Rayleigh–Jeans law"

Play Trivia Questions online!

or

Skip to study material about Steradian in the context of "Rayleigh–Jeans law"

Ad spacer

⭐ Core Definition: Steradian

The steradian (symbol: sr) or square radian is the unit of solid angle in the International System of Units (SI). It is used in three-dimensional geometry, and is analogous to the radian, which quantifies planar angles. A solid angle in the form of a circular cone can be projected onto a sphere from its centre, delineating a spherical cap where the cone intersects the sphere. The magnitude of the solid angle expressed in steradians is defined as the quotient of the surface area of the spherical cap and the square of the sphere's radius. This is analogous to the way a plane angle projected onto a circle delineates a circular arc on the circumference, whose length is proportional to the angle. Steradians can be used to measure a solid angle of any projected shape. The solid angle subtended is the same as that of a cone with the same projected area. A solid angle of one steradian subtends a cone aperture of approximately 1.144 radians or 65.54 degrees.

In the SI, solid angle is considered to be a dimensionless quantity, the ratio of the area projected onto a surrounding sphere and the square of the sphere's radius. This is the number of square radians in the solid angle. This means that the SI steradian is the number of square radians in a solid angle equal to one square radian, which of course is the number one. It is useful to distinguish between dimensionless quantities of a different kind, such as the radian (in the SI, a ratio of quantities of dimension length), so the symbol sr is used. For example, radiant intensity can be measured in watts per steradian (W⋅sr). The steradian was formerly an SI supplementary unit, but this category was abolished in 1995 and the steradian is now considered an SI derived unit.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Steradian in the context of Rayleigh–Jeans law

In physics, the Rayleigh–Jeans law is an approximation to the spectral radiance of electromagnetic radiation as a function of wavelength from a black body at a given temperature through classical arguments. For wavelength λ, it iswhere is the spectral radiance (the power emitted per unit emitting area, per steradian, per unit wavelength), is the speed of light, is the Boltzmann constant, and is the temperature in kelvins. For frequency , the expression is instead

The Rayleigh–Jeans law agrees with experimental results at large wavelengths (low frequencies) but strongly disagrees at short wavelengths (high frequencies). This inconsistency between observations and the predictions of classical physics is commonly known as the ultraviolet catastrophe. Planck's law, which gives the correct radiation at all frequencies, has the Rayleigh–Jeans law as its low-frequency limit.

↓ Explore More Topics
In this Dossier

Steradian in the context of Radiance

In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre (W·sr·m). It is a directional quantity: the radiance of a surface depends on the direction from which it is being observed.

The related quantity spectral radiance is the radiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength.

↑ Return to Menu

Steradian in the context of Solid angle

In geometry, a solid angle (symbol: Ω) is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point.The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

In the International System of Units (SI), a solid angle is expressed in a dimensionless unit called a steradian (symbol: sr), which is equal to one square radian, sr = rad. One steradian corresponds to one unit of area (of any shape) on the unit sphere surrounding the apex, so an object that blocks all rays from the apex would cover a number of steradians equal to the total surface area of the unit sphere, . Solid angles can also be measured in squares of angular measures such as degrees, minutes, and seconds.

↑ Return to Menu

Steradian in the context of Radiant intensity

In radiometry, radiant intensity is the radiant flux emitted, reflected, transmitted or received, per unit solid angle, and spectral intensity is the radiant intensity per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. These are directional quantities. The SI unit of radiant intensity is the watt per steradian (W/sr), while that of spectral intensity in frequency is the watt per steradian per hertz (W·sr·Hz) and that of spectral intensity in wavelength is the watt per steradian per metre (W·sr·m)—commonly the watt per steradian per nanometre (W·sr·nm). Radiant intensity is distinct from irradiance and radiant exitance, which are often called intensity in branches of physics other than radiometry. In radio-frequency engineering, radiant intensity is sometimes called radiation intensity.

↑ Return to Menu

Steradian in the context of Lumen (unit)

The lumen (symbol: lm) is the SI unit of luminous flux, which quantifies the perceived power of visible light emitted by a source. Luminous flux differs from power (radiant flux), which encompasses all electromagnetic waves emitted, including non-visible ones such as thermal radiation (infrared). By contrast, luminous flux is weighted according to a model (a "luminosity function") of the human eye's sensitivity to various wavelengths; this weighting is standardized by the CIE and ISO.

The lumen is defined as equivalent to one candela-steradian (symbol cd·sr):

↑ Return to Menu

Steradian in the context of BRDF

The bidirectional reflectance distribution function (BRDF), symbol , is a function of four real variables that defines how light from a source is reflected off an opaque surface. It is employed in the optics of real-world light, in computer graphics algorithms, and in computer vision algorithms. The function takes an incoming light direction, , and outgoing direction, (taken in a coordinate system where the surface normal lies along the z-axis), and returns the ratio of reflected radiance exiting along to the irradiance incident on the surface from direction . Each direction is itself parameterized by azimuth angle and zenith angle , therefore the BRDF as a whole is a function of 4 variables. The BRDF has units sr, with steradians (sr) being a unit of solid angle.

↑ Return to Menu

Steradian in the context of Spectral radiance

In radiometry, spectral radiance or specific intensity is the radiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of spectral radiance in frequency is the watt per steradian per square metre per hertz (W·sr·m·Hz) and that of spectral radiance in wavelength is the watt per steradian per square metre per metre (W·sr·m)—commonly the watt per steradian per square metre per nanometre (W·sr·m·nm). The microflick is also used to measure spectral radiance in some fields.

Spectral radiance gives a full radiometric description of the field of classical electromagnetic radiation of any kind, including thermal radiation and light. It is conceptually distinct from the descriptions in explicit terms of Maxwellian electromagnetic fields or of photon distribution. It refers to material physics as distinct from psychophysics.

↑ Return to Menu

Steradian in the context of Square degree

A square degree (deg) is a non-SI unit measure of solid angle. Other denotations include sq. deg. and (°). Just as degrees are used to measure parts of a circle, square degrees are used to measure parts of a sphere.

Analogous to one degree being equal to π/180 radians, a square degree is equal to (π/180) steradians (sr), or about 1/3283 sr or about 3.046×10 sr.The whole sphere has a solid angle of 4πsr which is approximately 41253 deg:

↑ Return to Menu

Steradian in the context of List of constellations by area

The International Astronomical Union (IAU) designates 88 constellations of stars. In the table below, they are ranked by the solid angle that they subtend in the sky, measured in square degrees and millisteradians.

These solid angles depend on arbitrary boundaries between the constellations: the list below is based on constellation boundaries drawn up by Eugène Delporte in 1930 on behalf of the IAU and published in Délimitation scientifique des constellations (Cambridge University Press). Before Delporte's work, there was no standard list of the boundaries of each constellation.

↑ Return to Menu