Steam reforming in the context of "Hydrogen fuel"

Play Trivia Questions online!

or

Skip to study material about Steam reforming in the context of "Hydrogen fuel"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Steam reforming in the context of Hydrogen fuel

The hydrogen economy is a term for the role hydrogen as an energy carrier to complement electricity as part a long-term option to reduce emissions of greenhouse gases. The aim is to reduce emissions where cheaper and more energy-efficient clean solutions are not available. In this context, hydrogen economy encompasses the production of hydrogen and the use of hydrogen in ways that contribute to phasing-out fossil fuels and limiting climate change.

Hydrogen can be produced by several means. Most hydrogen produced today is gray hydrogen, made from natural gas through steam methane reforming (SMR). This process accounted for 1.8% of global greenhouse gas emissions in 2021. Low-carbon hydrogen, which is made using SMR with carbon capture and storage (blue hydrogen), or through electrolysis of water using renewable power (green hydrogen), accounted for less than 1% of production. Of the 100 million tonnes of hydrogen produced in 2021, 43% was used in oil refining and 57% in industry, principally in the manufacture of ammonia for fertilizers, and methanol.

↓ Explore More Topics
In this Dossier

Steam reforming in the context of Electrolysis of water

Electrolysis of water is using electricity to split water into oxygen (O
2
) and hydrogen (H
2
) gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient "tanks" or "gas bottles", hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach approximately 2,800°C.

Water electrolysis requires a minimum potential difference of 1.23 volts, although at that voltage external heat is also required. Typically 1.5 volts is required. Electrolysis is rare in industrial applications since hydrogen can be produced less expensively from fossil fuels. Most of the time, hydrogen is made by splitting methane (CH4) into carbon dioxide (CO2) and hydrogen (H2) via steam reforming. This is a carbon-intensive process that means for every kilogram of "grey" hydrogen produced, approximately 10 kilograms of CO2 are emitted into the atmosphere.

↑ Return to Menu