Water splitting in the context of "Electrolysis of water"

Play Trivia Questions online!

or

Skip to study material about Water splitting in the context of "Electrolysis of water"

Ad spacer

⭐ Core Definition: Water splitting

Water splitting is the endergonic chemical reaction in which water is broken down into oxygen and hydrogen:

Efficient and economical water splitting would be a technological breakthrough that could underpin a hydrogen economy. A version of water splitting occurs in photosynthesis, but hydrogen is not released but rather used ionically to drive the Calvin cycle. The reverse of water splitting is the basis of the hydrogen fuel cell. Water splitting using solar radiation has not been commercialized.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Water splitting in the context of Electrolysis of water

Electrolysis of water is using electricity to split water into oxygen (O
2
) and hydrogen (H
2
) gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient "tanks" or "gas bottles", hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach approximately 2,800°C.

Water electrolysis requires a minimum potential difference of 1.23 volts, although at that voltage external heat is also required. Typically 1.5 volts is required. Electrolysis is rare in industrial applications since hydrogen can be produced less expensively from fossil fuels. Most of the time, hydrogen is made by splitting methane (CH4) into carbon dioxide (CO2) and hydrogen (H2) via steam reforming. This is a carbon-intensive process that means for every kilogram of "grey" hydrogen produced, approximately 10 kilograms of CO2 are emitted into the atmosphere.

↓ Explore More Topics
In this Dossier

Water splitting in the context of Photosynthesis

Photosynthesis (/ˌftəˈsɪnθəsɪs/ FOH-tə-SINTH-ə-sis) is a system of biological processes by which photopigment-bearing autotrophic organisms, such as most plants, algae and cyanobacteria, convert light energy — typically from sunlight — into the chemical energy necessary to fuel their metabolism. The term photosynthesis usually refers to oxygenic photosynthesis, a process that releases oxygen as a byproduct of water splitting. Photosynthetic organisms store the converted chemical energy within the bonds of intracellular organic compounds (complex compounds containing carbon), typically carbohydrates like sugars (mainly glucose, fructose and sucrose), starches, phytoglycogen and cellulose. When needing to use this stored energy, an organism's cells then metabolize the organic compounds through cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.

Some organisms also perform anoxygenic photosynthesis, which does not produce oxygen. Some bacteria (e.g. purple bacteria) uses bacteriochlorophyll to split hydrogen sulfide as a reductant instead of water, releasing sulfur instead of oxygen, which was a dominant form of photosynthesis in the euxinic Canfield oceans during the Boring Billion. Archaea such as Halobacterium also perform a type of non-carbon-fixing anoxygenic photosynthesis, where the simpler photopigment retinal and its microbial rhodopsin derivatives are used to absorb green light and produce a proton (hydron) gradient across the cell membrane, and the subsequent ion movement powers transmembrane proton pumps to directly synthesize adenosine triphosphate (ATP), the "energy currency" of cells. Such archaeal photosynthesis might have been the earliest form of photosynthesis that evolved on Earth, as far back as the Paleoarchean, preceding that of cyanobacteria (see Purple Earth hypothesis).

↑ Return to Menu