Statistical hypothesis testing in the context of "Statistical significance"

Play Trivia Questions online!

or

Skip to study material about Statistical hypothesis testing in the context of "Statistical significance"

Ad spacer

⭐ Core Definition: Statistical hypothesis testing

A statistical hypothesis test is a method of statistical inference used to decide whether the data provide sufficient evidence to reject a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a p-value computed from the test statistic. Roughly 100 specialized statistical tests are in use and noteworthy.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Statistical hypothesis testing in the context of Statistical significance

In statistical hypothesis testing, a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; and the p-value of a result, , is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. The result is said to be statistically significant, by the standards of the study, when . The significance level for a study is chosen before data collection, and is typically set to 5% or much lower—depending on the field of study.

In any experiment or observation that involves drawing a sample from a population, there is always the possibility that an observed effect would have occurred due to sampling error alone. But if the p-value of an observed effect is less than (or equal to) the significance level, an investigator may conclude that the effect reflects the characteristics of the whole population, thereby rejecting the null hypothesis.

↓ Explore More Topics
In this Dossier

Statistical hypothesis testing in the context of Text corpus

In linguistics and natural language processing, a corpus (pl.: corpora) or text corpus is a dataset, consisting of natively digital and older, digitalized, language resources, either annotated or unannotated.

Annotated, they have been used in corpus linguistics for statistical hypothesis testing, checking occurrences or validating linguistic rules within a specific language territory.

↑ Return to Menu

Statistical hypothesis testing in the context of Statistical model

A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process. When referring specifically to probabilities, the corresponding term is probabilistic model. All statistical hypothesis tests and all statistical estimators are derived via statistical models. More generally, statistical models are part of the foundation of statistical inference. A statistical model is usually specified as a mathematical relationship between one or more random variables and other non-random variables. As such, a statistical model is "a formal representation of a theory" (Herman Adèr quoting Kenneth Bollen).

↑ Return to Menu

Statistical hypothesis testing in the context of Data analysis

Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains. In today's business world, data analysis plays a role in making decisions more scientific and helping businesses operate more effectively.

Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. In statistical applications, data analysis can be divided into descriptive statistics, exploratory data analysis (EDA), and confirmatory data analysis (CDA). EDA focuses on discovering new features in the data while CDA focuses on confirming or falsifying existing hypotheses. Predictive analytics focuses on the application of statistical models for predictive forecasting or classification, while text analytics applies statistical, linguistic, and structural techniques to extract and classify information from textual sources, a variety of unstructured data. All of the above are varieties of data analysis.

↑ Return to Menu

Statistical hypothesis testing in the context of Correlation does not imply causation

The phrase "correlation does not imply causation" refers to the inability to legitimately deduce a cause-and-effect relationship between two events or variables solely on the basis of an observed association or correlation between them. The idea that "correlation implies causation" is an example of a questionable-cause logical fallacy, in which two events occurring together are taken to have established a cause-and-effect relationship. This fallacy is also known by the Latin phrase cum hoc ergo propter hoc ("with this, therefore because of this"). This differs from the fallacy known as post hoc ergo propter hoc ("after this, therefore because of this"), in which an event following another is seen as a necessary consequence of the former event, and from conflation, the errant merging of two events, ideas, databases, etc., into one.

As with any logical fallacy, identifying that the reasoning behind an argument is flawed does not necessarily imply that the resulting conclusion is false. Statistical methods have been proposed that use correlation as the basis for hypothesis tests for causality, including the Granger causality test and convergent cross mapping. The Bradford Hill criteria, also known as Hill's criteria for causation, are a group of nine principles that can be useful in considering the epidemiologic evidence of a causal relationship. Ultimately, assumptions are always required to draw causal conclusions, and modern causal inference frameworks focus on interrogating the strength of these assumptions.

↑ Return to Menu

Statistical hypothesis testing in the context of T-test

Student's t-test is a statistical test used to test whether the difference between the response of two groups is statistically significant or not. It is any statistical hypothesis test in which the test statistic follows a Student's t-distribution under the null hypothesis. It is most commonly applied when the test statistic would follow a normal distribution if the value of a scaling term in the test statistic were known (typically, the scaling term is unknown and is therefore a nuisance parameter). When the scaling term is estimated based on the data, the test statistic—under certain conditions—follows a Student's t distribution. The t-test's most common application is to test whether the means of two populations are significantly different. In many cases, a Z-test will yield very similar results to a t-test because the latter converges to the former as the size of the dataset increases.

↑ Return to Menu

Statistical hypothesis testing in the context of Test method

A test method is a method for a test in science or engineering, such as a physical test, chemical test, or statistical test. It is a specified procedure that produces a test result. To ensure accurate and relevant results, a test method should be "explicit, unambiguous, and experimentally feasible.", as well as effective and reproducible.

A test is an observation or experiment that determines one or more characteristics of a given sample, product, process, or service, with the purpose of comparing the test result to expected or desired results. The results can be qualitative (yes/no), quantitative (a measured value), or categorical and can be derived from personal observation or the output of a precision measuring instrument.

↑ Return to Menu