Unstructured data in the context of "Data analysis"

Play Trivia Questions online!

or

Skip to study material about Unstructured data in the context of "Data analysis"

Ad spacer

⭐ Core Definition: Unstructured data

Unstructured data (or unstructured information) is information that either does not have a pre-defined data model or is not organized in a pre-defined manner. Unstructured information is typically text-heavy, but may contain data such as dates, numbers, and facts as well. This results in irregularities and ambiguities that make it difficult to understand using traditional programs as compared to data stored in fielded form in databases or annotated (semantically tagged) in documents.

In 1998, Merrill Lynch said "unstructured data comprises the vast majority of data found in an organization, some estimates run as high as 80%." It is unclear what the source of this number is, but nonetheless it is accepted by some. Other sources have reported similar or higher percentages of unstructured data.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Unstructured data in the context of Data analysis

Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains. In today's business world, data analysis plays a role in making decisions more scientific and helping businesses operate more effectively.

Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. In statistical applications, data analysis can be divided into descriptive statistics, exploratory data analysis (EDA), and confirmatory data analysis (CDA). EDA focuses on discovering new features in the data while CDA focuses on confirming or falsifying existing hypotheses. Predictive analytics focuses on the application of statistical models for predictive forecasting or classification, while text analytics applies statistical, linguistic, and structural techniques to extract and classify information from textual sources, a variety of unstructured data. All of the above are varieties of data analysis.

↓ Explore More Topics
In this Dossier

Unstructured data in the context of Data science

Data science is an interdisciplinary academic field that uses statistics, scientific computing, scientific methods, processing, scientific visualization, algorithms and systems to extract or extrapolate knowledge from potentially noisy, structured, or unstructured data.

Data science also integrates domain knowledge from the underlying application domain (e.g., natural sciences, information technology, and medicine). Data science is multifaceted and can be described as a science, a research paradigm, a research method, a discipline, a workflow, and a profession.

↑ Return to Menu