Standard candle in the context of "Accelerating expansion of the universe"

⭐ In the context of accelerating expansion of the universe, a 'standard candle' like a Type Ia supernova is considered valuable because it allows astronomers to…

Ad spacer

⭐ Core Definition: Standard candle

The cosmic distance ladder (also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A direct distance measurement of an astronomical object is possible only for those objects that are "close enough" (within about a thousand parsecs or 3×10 km) to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances. Several methods rely on a standard candle, which is an astronomical object that has a known luminosity.

The ladder analogy arises because no single technique can measure distances at all ranges encountered in astronomy. Instead, one method can be used to measure nearby distances, a second can be used to measure nearby to intermediate distances, and so on. Each rung of the ladder provides information that can be used to determine the distances at the next higher rung.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Standard candle in the context of Accelerating expansion of the universe

Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered in 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness (a standard candle), and since objects that are further away appear dimmer, the observed brightness of these supernovae can be used to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the further away an object is, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerating rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies.

The accelerated expansion of the universe is thought to have begun since the universe entered its dark-energy-dominated era roughly 5 billion years ago.Within the framework of general relativity, an accelerated expansion can be accounted for by a positive value of the cosmological constant Λ, equivalent to the presence of a positive vacuum energy, dubbed "dark energy". While there are alternative possible explanations, the description assuming dark energy (positive Λ) is used in the standard model of cosmology, which also includes cold dark matter (CDM) and is known as the Lambda-CDM model.

↓ Explore More Topics
In this Dossier

Standard candle in the context of Baryon acoustic oscillations

In cosmology, baryon acoustic oscillations (BAO) are fluctuations in the density of the visible baryonic matter (normal matter) of the universe, caused by acoustic density waves in the primordial plasma of the early universe. In the same way that supernovae provide a "standard candle" for astronomical observations, BAO matter clustering provides a "standard ruler" for length scale in cosmology. The length of this standard ruler is given by the maximum distance the acoustic waves could travel in the primordial plasma before the plasma cooled to the point where it became neutral atoms (the epoch of recombination), which stopped the expansion of the plasma density waves, "freezing" them into place. The length of this standard ruler (≈490 million light years in today's universe) can be measured by looking at the large scale structure of matter using astronomical surveys. BAO measurements help cosmologists understand more about the nature of dark energy (which causes the accelerating expansion of the universe) by constraining cosmological parameters.

↑ Return to Menu

Standard candle in the context of Classical Cepheid variable

Classical Cepheids are a type of Cepheid variable star. They are young, population I variable stars that exhibit regular radial pulsations with periods of a few days to a few weeks and visual amplitudes ranging from a few tenths of a magnitude up to about 2 magnitudes. Classical Cepheids are also known as Population I Cepheids, Type I Cepheids, and Delta Cepheid variables.

There exists a well-defined relationship between a classical Cepheid variable's luminosity and pulsation period, securing Cepheids as viable standard candles for establishing the galactic and extragalactic distance scales. Hubble Space Telescope (HST) observations of classical Cepheid variables have enabled firmer constraints on Hubble's law, which describes the expansion rate of the observable Universe. Classical Cepheids have also been used to clarify many characteristics of our galaxy, such as the local spiral arm structure and the Sun's distance from the galactic plane.

↑ Return to Menu

Standard candle in the context of Planetary nebula luminosity function

Planetary nebula luminosity function (PNLF) is a secondary distance indicator used in astronomy. It makes use of the [O III] λ5007 forbidden line found in all planetary nebula (PNe) which are members of the old stellar populations (Population II).It can be used to determine distances to both spiral and elliptical galaxies despite their completely different stellar populations and is part of the Extragalactic Distance Scale.

↑ Return to Menu

Standard candle in the context of Standard ruler

A standard ruler is an astronomical object for which the actual physical size is known. By measuring its angular size in the sky, one can use simple trigonometry to determine its distance from Earth. In simple terms, this is because objects of a fixed size appear smaller the further away they are.

Measuring distances is of great importance in cosmology, as the relationship between the distance and redshift of an object can be used to measure the expansion rate and geometry of the Universe. Distances can also be measured using standard candles; many different types of standard candles and rulers are needed to construct the cosmic distance ladder.

↑ Return to Menu

Standard candle in the context of RR Lyrae variable

RR Lyrae variables are periodic variable stars, commonly found in globular clusters. They are used as standard candles to measure (extra) galactic distances, assisting with the cosmic distance ladder. This class is named after the prototype and brightest example, RR Lyrae.

They are pulsating horizontal branch stars of spectral class A or F, with a mass of around half the Sun's. They are thought to have shed mass during the red-giant branch phase, and were once stars at around 0.8 solar masses.

↑ Return to Menu