Sphalerite in the context of Zinc metabolism


Sphalerite in the context of Zinc metabolism

Sphalerite Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Sphalerite in the context of "Zinc metabolism"


⭐ Core Definition: Sphalerite

Sphalerite is a sulfide mineral with the chemical formula (Zn, Fe)S. It is the most important ore of zinc. Sphalerite is found in a variety of deposit types, but it is primarily in sedimentary exhalative, Mississippi-Valley type, and volcanogenic massive sulfide deposits. It is found in association with galena, chalcopyrite, pyrite (and other sulfides), calcite, dolomite, quartz, rhodochrosite, and fluorite.

German geologist Ernst Friedrich Glocker discovered sphalerite in 1847, naming it based on the Greek word sphaleros, meaning "deceiving", due to the difficulty of identifying the mineral.

↓ Menu
HINT:

In this Dossier

Sphalerite in the context of Galena

Galena, also called lead glance, is the natural mineral form of lead(II) sulfide (PbS). It is the most important ore of lead and an important source of silver.

Galena is one of the most abundant and widely distributed sulfide minerals. It crystallizes in the cubic crystal system often showing octahedral forms. It is often associated with the minerals sphalerite, calcite and fluorite.

View the full Wikipedia page for Galena
↑ Return to Menu

Sphalerite in the context of Zinc

Zinc is a chemical element; it has symbol Zn and atomic number 30. It is a slightly brittle metal at room temperature and has a shiny blue whitish appearance when surface oxidation is removed. It is the first element in group 12 (IIB) of the periodic table. Zinc is the 24th most abundant element in Earth's crust, with an average concentration of 70 grams per ton. Zinc also has five stable isotopes; the most abundant of which, Zn-64, comprises nearly half of zinc's total abundance. In some respects, zinc is chemically similar to magnesium: both elements exhibit only one normal oxidation state (+2), and the Zn and Mg ions are of similar size. The most common zinc ore is sphalerite (zinc blende), a zinc sulfide mineral. The largest concentration of economically feasible lodes in descending order are located in China, Peru, and Australia, among others. Zinc is refined industrially by froth flotation of the ore, roasting, and final extraction using electricity (electrowinning).

Zinc is an essential trace element for humans, animals, plants and for microorganisms and is necessary for both prenatal and postnatal development. It is the second most abundant trace metal in humans after iron, an important cofactor for many enzymes, and the only metal which appears in all enzyme classes. Zinc is also an essential nutrient element for coral growth.

View the full Wikipedia page for Zinc
↑ Return to Menu

Sphalerite in the context of Zinc smelting

Zinc smelting is the process of converting zinc concentrates (ores that contain zinc) into pure zinc. Zinc smelting has historically been more difficult than the smelting of other metals, e.g. iron, because in contrast, zinc has a low boiling point. At temperatures typically used for smelting metals, zinc is a gas that will escape from a furnace with the flue gas and be lost, unless specific measures are taken to prevent it.

The most common zinc concentrate processed is zinc sulfide, which is obtained by concentrating sphalerite via froth flotation. Secondary (recycled) zinc material, such as zinc oxide, is also processed with the zinc sulfide. Approximately 30% of all zinc produced is from recycled sources.

View the full Wikipedia page for Zinc smelting
↑ Return to Menu

Sphalerite in the context of Roasting (metallurgy)

Roasting is a process of heating an ore under flowing air. It is a step in the processing of certain ores. More specifically, roasting is often a metallurgical process involving gas–solid reactions at elevated temperatures with the goal of purifying the metal component(s). Often before roasting, the ore has already been partially purified, e.g. by froth flotation. The concentrate is mixed with other materials to facilitate the process. The technology is useful in making certain ores usable but it can also be a serious source of air pollution.

Roasting consists of thermal gas–solid reactions, which can include oxidation, reduction, chlorination, sulfation, and pyrohydrolysis. In roasting, the ore or ore concentrate is treated with very hot air. This process is generally applied to sulfide minerals. During roasting, the sulfide is converted to an oxide, and sulfur is released as sulfur dioxide, a gas. For the ores Cu2S (chalcocite) and ZnS (sphalerite), balanced equations for the roasting are:

View the full Wikipedia page for Roasting (metallurgy)
↑ Return to Menu

Sphalerite in the context of Germanium

Germanium is a chemical element; it has symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically similar to silicon. Like silicon, germanium naturally reacts and forms complexes with oxygen in nature.

Because it seldom appears in high concentration, germanium was found comparatively late in the discovery of the elements. Germanium ranks 50th in abundance of the elements in the Earth's crust. In 1869, Dmitri Mendeleev predicted its existence and some of its properties from its position on his periodic table, and called the element ekasilicon. On February 6, 1886, Clemens Winkler at Freiberg University found the new element, along with silver and sulfur, in the mineral argyrodite. Winkler named the element after Germany, his country of birth. Germanium is mined primarily from sphalerite (the primary ore of zinc), though germanium is also recovered commercially from silver, lead, and copper ores.

View the full Wikipedia page for Germanium
↑ Return to Menu

Sphalerite in the context of Wolframite

Wolframite is an iron, manganese, and tungstate mineral with a chemical formula of (Fe,Mn)WO4 that is the intermediate mineral between ferberite (Fe rich) and hübnerite (Mn rich). Along with scheelite, the wolframite series are the most important tungsten ore minerals. Wolframite is found in quartz veins and pegmatites associated with granitic intrusives. Associated minerals include cassiterite, scheelite, bismuth, quartz, pyrite, galena, sphalerite, and arsenopyrite.

This mineral was historically found in Europe in Bohemia, Saxony, and in the UK in Devon and Cornwall. China reportedly has the world's largest supply of tungsten ore with about 60%. Other producers are Spain, Canada, Portugal, Russia, Australia, Thailand, South Korea, Rwanda, Bolivia, the United States, and the Democratic Republic of the Congo.

View the full Wikipedia page for Wolframite
↑ Return to Menu

Sphalerite in the context of Zinc sulfide

Zinc sulfide (or zinc sulphide) is an inorganic compound with the chemical formula of ZnS. This is the main form of zinc found in nature, where it mainly occurs as the mineral sphalerite. Although this mineral is usually black because of various impurities, the pure material is white, and it is widely used as a pigment. In its dense synthetic form, zinc sulfide can be transparent, and it is used as a window for visible optics and infrared optics.

View the full Wikipedia page for Zinc sulfide
↑ Return to Menu

Sphalerite in the context of Huarón Mining District

11°01′00″S 76°26′00″W / 11.01667°S 76.43333°W / -11.01667; -76.43333

The Huarón Mining District is one of the richest polymetallic (Zn-Pb-Ag-Cu-(Au)) deposit clusters in Peru. It is located 20 km SSW of Cerro de Pasco, in the Huayllay District, Pasco Province, Pasco Department, between 4500 and 4700 m.a.s.l. The Huarón Mining District belongs to the Miocene polymetallic belt of the Central Andes. Hydrothermal mineralization occurs as predominantly in N-S to NNW-SSW and E-W veins as well as in "mantos" replacing favorable sedimentary rock. Epithermal hydrothermal fluids are thought to be derived from quartz-monzonitic intrusions tentatively dated at 7.4 Ma (K-Ar on adularia). The most important economic minerals are tennantitetetrahedrite (containing most of the silver), sphalerite, galena, and chalcopyrite. Silver is also found in pyrargyrite, proustite, polybasite, and pearceite. In the central copper core of the Huarón deposit, enargite occurs. Main gangue minerals are pyrite, quartz, rhodochrosite, and calcite.

View the full Wikipedia page for Huarón Mining District
↑ Return to Menu

Sphalerite in the context of Indium

Indium is a chemical element; it has symbol In and atomic number 49. It is a silvery-white post-transition metal and one of the softest elements. Chemically, indium is similar to gallium and thallium, and its properties are largely intermediate between the two. It was discovered in 1863 by Ferdinand Reich and Hieronymous Theodor Richter by spectroscopic methods and named for the indigo blue line in its spectrum.

Indium is used primarily in the production of flat-panel displays as indium tin oxide (ITO), a transparent and conductive coating applied to glass. It is also used in the semiconductor industry, in low-melting-point metal alloys such as solders and soft-metal high-vacuum seals. It is used in the manufacture of blue and white LED circuits, mainly to produce Indium gallium nitride p-type semiconductor substrates. It is produced exclusively as a by-product during the processing of the ores of other metals, chiefly from sphalerite and other zinc sulfide ores.

View the full Wikipedia page for Indium
↑ Return to Menu

Sphalerite in the context of Sedimentary exhalative deposits

Sedimentary exhalative deposits (SEDEX or SedEx deposits) are zinc-lead deposits originally interpreted to have been formed by discharge of metal-bearing basinal fluids onto the seafloor resulting in the precipitation of mainly stratiform ore, often with thin laminations of sulfide minerals. SEDEX deposits are hosted largely by clastic rocks deposited in intracontinental rifts or failed rift basins and passive continental margins. Since these ore deposits frequently form massive sulfide lenses, they are also named sediment-hosted massive sulfide deposits, as opposed to volcanic-hosted massive sulfide (VHMS) deposits. The sedimentary appearance of the thin laminations led to early interpretations that the deposits formed exclusively or mainly by exhalative processes onto the seafloor, hence the term SEDEX. However, recent study of numerous deposits indicates that shallow subsurface replacement is also an important process, in several deposits the predominant one, with only local if any exhalations onto the seafloor. For this reason, some authors prefer the term clastic-dominated zinc-lead deposits. As used today, therefore, the term SEDEX is not to be taken to mean that hydrothermal fluids actually vented into the overlying water column, although this may have occurred in some cases.

Main ore minerals in SEDEX deposits are fine-grained sphalerite and galena, chalcopyrite is significant in some deposits; silver-bearing sulfosalts are frequent minor constituents; pyrite is always present and can be a minor component or the dominant sulfide, as it is the case in massive sulfide bodies; barite content is common to absent, locally economic.

View the full Wikipedia page for Sedimentary exhalative deposits
↑ Return to Menu

Sphalerite in the context of Gangue

Gangue (/ɡæŋ/) is the commercially worthless material that surrounds, or is closely mixed with, a wanted mineral in an ore deposit. It is thus distinct from overburden, which is the waste rock or materials overlying an ore or mineral body that is displaced during mining without being processed.

The separation of valuable mineral from gangue minerals is known as mineral processing, mineral dressing, or ore dressing. It is a necessary, and often significant, aspect of mining. It can be a complicated process, depending on the nature of the minerals involved. For example, galena, an ore of lead, is usually found in large pieces within its gangue, so it does not normally need extensive processing to remove it; but cassiterite, the chief ore mineral of tin, is usually disseminated as very small crystals throughout its gangue, so when it is mined from hard rock, the ore-bearing rock first needs to be crushed very finely, and then has to be subjected to sophisticated processes to separate the ore.

View the full Wikipedia page for Gangue
↑ Return to Menu