Arsenopyrite in the context of "Wolframite"

Play Trivia Questions online!

or

Skip to study material about Arsenopyrite in the context of "Wolframite"

Ad spacer

⭐ Core Definition: Arsenopyrite

Arsenopyrite (IMA symbol: Apy) is an iron arsenic sulfide (FeAsS). It is a hard (Mohs 5.5–6) metallic, opaque, steel grey to silver white mineral with a relatively high specific gravity of 6.1.

When dissolved in nitric acid, it releases elemental sulfur. When arsenopyrite is heated, it produces sulfur and arsenic vapor. With 46% arsenic content, arsenopyrite, along with orpiment, is a principal ore of arsenic. When deposits of arsenopyrite become exposed to the atmosphere, the mineral slowly converts into iron arsenates. Arsenopyrite is generally an acid-consuming sulfide mineral, unlike iron pyrite which can lead to acid mine drainage.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Arsenopyrite in the context of Wolframite

Wolframite is an iron, manganese, and tungstate mineral with a chemical formula of (Fe,Mn)WO4 that is the intermediate mineral between ferberite (Fe rich) and hübnerite (Mn rich). Along with scheelite, the wolframite series are the most important tungsten ore minerals. Wolframite is found in quartz veins and pegmatites associated with granitic intrusives. Associated minerals include cassiterite, scheelite, bismuth, quartz, pyrite, galena, sphalerite, and arsenopyrite.

This mineral was historically found in Europe in Bohemia, Saxony, and in the UK in Devon and Cornwall. China reportedly has the world's largest supply of tungsten ore with about 60%. Other producers are Spain, Canada, Portugal, Russia, Australia, Thailand, South Korea, Rwanda, Bolivia, the United States, and the Democratic Republic of the Congo.

↓ Explore More Topics
In this Dossier

Arsenopyrite in the context of Bioleaching

Bioleaching is the extraction or liberation of metals from their ores through the use of living organisms. Bioleaching is one of several applications within biohydrometallurgy and several methods are used to treat ores or concentrates containing copper, zinc, lead, arsenic, antimony, nickel, molybdenum, gold, silver, and cobalt.

Bioleaching falls into two broad categories. The first, is the use of microorganisms to oxidize refractory minerals to release valuable metals such and gold and silver. Most commonly the minerals that are the target of oxidization are pyrite and arsenopyrite.

↑ Return to Menu