Spectral radiometric quantity in the context of Radiosity (radiometry)


Spectral radiometric quantity in the context of Radiosity (radiometry)

Spectral radiometric quantity Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Spectral radiometric quantity in the context of "Radiosity (radiometry)"


⭐ Core Definition: Spectral radiometric quantity

Radiometry is a set of techniques for measuring electromagnetic radiation, including visible light. Radiometric techniques in optics characterize the distribution of the radiation's power in space, as opposed to photometric techniques, which characterize the light's interaction with the human eye.

The fundamental difference between radiometry and photometry is that radiometry can cover the entire optical radiation spectrum, while photometry is limited to the visible spectrum. However, some definitions of radiometry include other portions of the electromagnetic radiation spectrum, and some glossaries define photometry such that associated quantities are weighted by wavelength according to the spectral sensitivity of the human visual system. Photometry can therefore be considered a kind of radiometry. Radiometry is distinct from quantum techniques such as photon counting.

↓ Menu
HINT:

In this Dossier

Spectral radiometric quantity in the context of Irradiance

In radiometry, irradiance is the radiant flux received by a surface per unit area. The SI unit of irradiance is the watt per square metre (symbol W⋅m or W/m). The CGS unit erg per square centimetre per second (erg⋅cm⋅s) is often used in astronomy. Irradiance is often called intensity, but this term is avoided in radiometry where such usage leads to confusion with radiant intensity. In astrophysics, irradiance is called radiant flux.

Spectral irradiance is the irradiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The two forms have different dimensions and units: spectral irradiance of a frequency spectrum is measured in watts per square metre per hertz (W⋅m⋅Hz), while spectral irradiance of a wavelength spectrum is measured in watts per square metre per metre (W⋅m), or more commonly watts per square metre per nanometre (W⋅m⋅nm).

View the full Wikipedia page for Irradiance
↑ Return to Menu

Spectral radiometric quantity in the context of Radiance

In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre (W·sr·m). It is a directional quantity: the radiance of a surface depends on the direction from which it is being observed.

The related quantity spectral radiance is the radiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength.

View the full Wikipedia page for Radiance
↑ Return to Menu

Spectral radiometric quantity in the context of Radiant emittance

In radiometry, radiant exitance or radiant emittance is the radiant flux emitted by a surface per unit area, whereas spectral exitance or spectral emittance is the radiant exitance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. This is the emitted component of radiosity. The SI unit of radiant exitance is the watt per square metre (W/m), while that of spectral exitance in frequency is the watt per square metre per hertz (W·m·Hz) and that of spectral exitance in wavelength is the watt per square metre per metre (W·m)—commonly the watt per square metre per nanometre (W·m·nm). The CGS unit erg per square centimeter per second (erg·cm·s) is often used in astronomy. Radiant exitance is often called "intensity" in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.

View the full Wikipedia page for Radiant emittance
↑ Return to Menu

Spectral radiometric quantity in the context of Radiant flux

In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiant flux is the watt (W), one joule per second (J/s), while that of spectral flux in frequency is the watt per hertz (W/Hz) and that of spectral flux in wavelength is the watt per metre (W/m)—commonly the watt per nanometre (W/nm).

View the full Wikipedia page for Radiant flux
↑ Return to Menu

Spectral radiometric quantity in the context of Radiant intensity

In radiometry, radiant intensity is the radiant flux emitted, reflected, transmitted or received, per unit solid angle, and spectral intensity is the radiant intensity per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. These are directional quantities. The SI unit of radiant intensity is the watt per steradian (W/sr), while that of spectral intensity in frequency is the watt per steradian per hertz (W·sr·Hz) and that of spectral intensity in wavelength is the watt per steradian per metre (W·sr·m)—commonly the watt per steradian per nanometre (W·sr·nm). Radiant intensity is distinct from irradiance and radiant exitance, which are often called intensity in branches of physics other than radiometry. In radio-frequency engineering, radiant intensity is sometimes called radiation intensity.

View the full Wikipedia page for Radiant intensity
↑ Return to Menu

Spectral radiometric quantity in the context of Radiosity (heat transfer)

↑ Return to Menu

Spectral radiometric quantity in the context of Spectral radiance

In radiometry, spectral radiance or specific intensity is the radiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of spectral radiance in frequency is the watt per steradian per square metre per hertz (W·sr·m·Hz) and that of spectral radiance in wavelength is the watt per steradian per square metre per metre (W·sr·m)—commonly the watt per steradian per square metre per nanometre (W·sr·m·nm). The microflick is also used to measure spectral radiance in some fields.

Spectral radiance gives a full radiometric description of the field of classical electromagnetic radiation of any kind, including thermal radiation and light. It is conceptually distinct from the descriptions in explicit terms of Maxwellian electromagnetic fields or of photon distribution. It refers to material physics as distinct from psychophysics.

View the full Wikipedia page for Spectral radiance
↑ Return to Menu