Radiant exitance in the context of Spectral radiometric quantity


Radiant exitance in the context of Spectral radiometric quantity

Radiant exitance Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Radiant exitance in the context of "Spectral radiometric quantity"


⭐ Core Definition: Radiant exitance

In radiometry, radiant exitance or radiant emittance is the radiant flux emitted by a surface per unit area, whereas spectral exitance or spectral emittance is the radiant exitance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. This is the emitted component of radiosity. The SI unit of radiant exitance is the watt per square metre (W/m), while that of spectral exitance in frequency is the watt per square metre per hertz (W·m·Hz) and that of spectral exitance in wavelength is the watt per square metre per metre (W·m)—commonly the watt per square metre per nanometre (W·m·nm). The CGS unit erg per square centimeter per second (erg·cm·s) is often used in astronomy. Radiant exitance is often called "intensity" in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.

↓ Menu
HINT:

In this Dossier

Radiant exitance in the context of Spectral power distribution

In radiometry, photometry, and color science, a spectral power distribution (SPD) measurement describes the power per unit area per unit wavelength of an illumination (radiant exitance). More generally, the term spectral power distribution can refer to the concentration, as a function of wavelength, of any radiometric or photometric quantity (e.g. radiant energy, radiant flux, radiant intensity, radiance, irradiance, radiant exitance, radiosity, luminance, luminous flux, luminous intensity, illuminance, luminous emittance).

Knowledge of the SPD is crucial for optical-sensor system applications. Optical properties such as transmittance, reflectivity, and absorbance as well as the sensor response are typically dependent on the incident wavelength.

View the full Wikipedia page for Spectral power distribution
↑ Return to Menu

Radiant exitance in the context of Spectral flux density

In spectroscopy, spectral flux density is the quantity that describes the rate at which energy is transferred by electromagnetic radiation through a real or virtual surface, per unit surface area and per unit wavelength (or, equivalently, per unit frequency). It is a radiometric rather than a photometric measure. In SI units it is measured in W m, although it can be more practical to use W m nm (1 W m nm = 1 GW m = 1 W mm) or W m μm (1 W m μm = 1 MW m), and respectively by W·m·Hz, Jansky or solar flux units. The terms irradiance, radiant exitance, radiant emittance, and radiosity are closely related to spectral flux density.

The terms used to describe spectral flux density vary between fields, sometimes including adjectives such as "electromagnetic" or "radiative", and sometimes dropping the word "density". Applications include:

View the full Wikipedia page for Spectral flux density
↑ Return to Menu

Radiant exitance in the context of Radiant intensity

In radiometry, radiant intensity is the radiant flux emitted, reflected, transmitted or received, per unit solid angle, and spectral intensity is the radiant intensity per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. These are directional quantities. The SI unit of radiant intensity is the watt per steradian (W/sr), while that of spectral intensity in frequency is the watt per steradian per hertz (W·sr·Hz) and that of spectral intensity in wavelength is the watt per steradian per metre (W·sr·m)—commonly the watt per steradian per nanometre (W·sr·nm). Radiant intensity is distinct from irradiance and radiant exitance, which are often called intensity in branches of physics other than radiometry. In radio-frequency engineering, radiant intensity is sometimes called radiation intensity.

View the full Wikipedia page for Radiant intensity
↑ Return to Menu

Radiant exitance in the context of Stefan–Boltzmann law

The Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan, who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically.

For an ideal absorber/emitter or black body, the Stefan–Boltzmann law states that the total energy radiated per unit surface area per unit time (also known as the radiant exitance) is directly proportional to the fourth power of the black body's temperature, T:

View the full Wikipedia page for Stefan–Boltzmann law
↑ Return to Menu

Radiant exitance in the context of Nuclear medicine

Nuclear medicine (nuclear radiology) is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear imaging is, in a sense, radiology done inside out, because it records radiation emitted from within the body rather than radiation that is transmitted through the body from external sources like X-ray generators. In addition, nuclear medicine scans differ from radiology, as the emphasis is not on imaging anatomy, but on the function. For this reason, it is called a physiological imaging modality. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) scans are the two most common imaging modalities in nuclear medicine.

View the full Wikipedia page for Nuclear medicine
↑ Return to Menu

Radiant exitance in the context of Radiative flux

Radiative flux, also known as radiative flux density or radiation flux (or sometimes power flux density), is the amount of power radiated through a given area, in the form of photons or other elementary particles, typically expressed in watts per square meter (W/m). It is used in astronomy to determine the magnitude and spectral class of a star and in meteorology to determine the intensity of the convection in the planetary boundary layer. Radiative flux also acts as a generalization of heat flux, which is equal to the radiative flux when restricted to the infrared spectrum.

When radiative flux is incident on a surface, it is often called irradiance. Flux emitted from a surface may be called radiant exitance or radiant emittance. The ratio of irradiance reflected to the irradiance received by a surface is called albedo.

View the full Wikipedia page for Radiative flux
↑ Return to Menu