Spectral class in the context of Compact object


Spectral class in the context of Compact object

Spectral class Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Spectral class in the context of "Compact object"


⭐ Core Definition: Spectral class

In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature.

Most stars are currently classified under the Morgan–Keenan (MK) system using the letters O, B, A, F, G, K, and M, a sequence from the hottest (O-type) to the coolest (M-type). Each letter class is then subdivided using a numeric digit with 0 being hottest and 9 being coolest (e.g., A8, A9, F0, and F1 form a sequence from hotter to cooler). The sequence has been expanded with three classes for other stars that do not fit in the classical system: W, S and C. Some stellar remnants or objects of deviating mass have also been assigned letters: D for white dwarfs and L, T and Y for brown dwarfs (and exoplanets).

↓ Menu
HINT:

In this Dossier

Spectral class in the context of Solar System object

The following is a list of Solar System objects by orbit, ordered by increasing distance from the Sun. Most named objects in this list have a diameter of 500 km or more.

View the full Wikipedia page for Solar System object
↑ Return to Menu

Spectral class in the context of Strömgren sphere

In theoretical astrophysics, there can be a sphere of ionized hydrogen (H II) around a young star of the spectral classes O or B. The theory was derived by Bengt Strömgren in 1937 and later named Strömgren sphere after him. The Rosette Nebula is the most prominent example of this type of emission nebula from the H II-regions.

View the full Wikipedia page for Strömgren sphere
↑ Return to Menu