Solid state (electronics) in the context of Solid-state lighting


Solid state (electronics) in the context of Solid-state lighting

Solid state (electronics) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Solid state (electronics) in the context of "Solid-state lighting"


⭐ Core Definition: Solid state (electronics)

Solid-state electronics are semiconductor electronics: electronic equipment that use semiconductor devices such as transistors, diodes and integrated circuits (ICs). The term is also used as an adjective for devices in which semiconductor electronics that have no moving parts replace devices with moving parts, such as the solid-state relay, in which transistor switches are used in place of a moving-arm electromechanical relay, or the solid-state drive (SSD), a type of semiconductor memory used in computers to replace hard disk drives, which store data on a rotating disk.

↓ Menu
HINT:

👉 Solid state (electronics) in the context of Solid-state lighting

Solid-state lighting (SSL) is a type of lighting that uses semiconductor light-emitting diodes (LEDs), organic light-emitting diodes (OLED), or polymer light-emitting diodes (PLED) as sources of illumination rather than electrical filaments, plasma (used in arc lamps such as fluorescent lamps), or gas.

Solid state electroluminescence is used in SSL, as opposed to incandescent bulbs (which use thermal radiation) or fluorescent tubes. Compared to incandescent lighting, SSL creates visible light with reduced heat generation and less energy dissipation. Most common "white LEDs” convert blue light from a solid-state device to an (approximate) white light spectrum using photoluminescence, the same principle used in conventional fluorescent tubes.

↓ Explore More Topics
In this Dossier

Solid state (electronics) in the context of Flat-panel detector

Flat-panel detectors are a class of solid-state x-ray digital radiography devices similar in principle to the image sensors used in digital photography and video. They are used in both projectional radiography and as an alternative to x-ray image intensifiers (IIs) in fluoroscopy equipment.

View the full Wikipedia page for Flat-panel detector
↑ Return to Menu

Solid state (electronics) in the context of Dynamo

A dynamo is an electrical generator that creates direct current using a commutator. Dynamos employed electromagnets for self-starting by using residual magnetic field left in the iron cores of electromagnets (i.e. field coils). If a dynamo were never run before, it was usual to use a separate battery to excite or flash the field of the electromagnets to enable self-starting. Dynamos were the first practical electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter.

Today, the simpler and more reliable alternator dominates large scale power generation, for efficiency, reliability and cost reasons. A dynamo has the disadvantages of a mechanical commutator. Also, converting alternating to direct current using rectifiers (such as vacuum tubes or more recently via solid state technology) is effective and usually economical.

View the full Wikipedia page for Dynamo
↑ Return to Menu

Solid state (electronics) in the context of Thyristors

A thyristor (/θˈrɪstər/, from a combination of Greek language θύρα, meaning "door" or "valve", and transistor ) is a solid-state semiconductor device which can be thought of as being a highly robust and switchable diode, allowing the passage of current in one direction but not the other, often under control of a gate electrode, that is used in high power applications like inverters and radar generators. It usually consists of four layers of alternating P- and N-type materials. It acts as a bistable switch (or a latch). There are two designs, differing in what triggers the conducting state. In a three-lead thyristor, a small current on its gate lead controls the larger current of the anode-to-cathode path. In a two-lead thyristor, conduction begins when the potential difference between the anode and cathode themselves is sufficiently large (breakdown voltage). The thyristor continues conducting until the voltage across the device is reverse-biased or the voltage is removed (by some other means), or through the control gate signal on newer types.

Some sources define "silicon-controlled rectifier" (SCR) and "thyristor" as synonymous. Other sources define thyristors as more complex devices that incorporate at least four layers of alternating N-type and P-type substrate.

View the full Wikipedia page for Thyristors
↑ Return to Menu

Solid state (electronics) in the context of Hot electron

Hot carrier injection (HCI) is a phenomenon in solid-state electronic devices where an electron or a "hole" gains sufficient kinetic energy to overcome a potential barrier necessary to break an interface state. The term "hot" refers to the effective temperature used to model carrier density, not to the overall temperature of the device. Since the charge carriers can become trapped in the gate dielectric of a MOS transistor, the switching characteristics of the transistor can be permanently changed. Hot-carrier injection is one of the mechanisms that adversely affects the reliability of semiconductors of solid-state devices.

View the full Wikipedia page for Hot electron
↑ Return to Menu

Solid state (electronics) in the context of Tube amplifiers

A valve amplifier or tube amplifier is a type of electronic amplifier that uses vacuum tubes to increase the amplitude or power of a signal. Low to medium power valve amplifiers for frequencies below the microwaves were largely replaced by solid state amplifiers in the 1960s and 1970s.Valve amplifiers can be used for applications such as guitar amplifiers, satellite transponders such as DirecTV and GPS, high quality stereo amplifiers, military applications (such as radar) and very high power radio and UHF television transmitters.

View the full Wikipedia page for Tube amplifiers
↑ Return to Menu

Solid state (electronics) in the context of Dye lasers

A dye laser is a laser that uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths, often spanning 50 to 100 nanometers or more. The wide bandwidth makes them particularly suitable for tunable lasers and pulsed lasers. The dye rhodamine 6G, for example, can be tuned from 635 nm (orangish-red) to 560 nm (greenish-yellow), and produce pulses as short as 16 femtoseconds. Moreover, the dye can be replaced by another type in order to generate an even broader range of wavelengths with the same laser, from the near-infrared to the near-ultraviolet, although this usually requires replacing other optical components in the laser as well, such as dielectric mirrors or pump lasers.

Dye lasers were independently discovered by P. P. Sorokin, F. P. Schäfer (and colleagues), and Mary Spaeth in 1966.

View the full Wikipedia page for Dye lasers
↑ Return to Menu