Thyristor in the context of Solid state (electronics)


Thyristor in the context of Solid state (electronics)

Thyristor Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Thyristor in the context of "Solid state (electronics)"


⭐ Core Definition: Thyristor

A thyristor (/θˈrɪstər/, from a combination of Greek language θύρα, meaning "door" or "valve", and transistor ) is a solid-state semiconductor device which can be thought of as being a highly robust and switchable diode, allowing the passage of current in one direction but not the other, often under control of a gate electrode, that is used in high power applications like inverters and radar generators. It usually consists of four layers of alternating P- and N-type materials. It acts as a bistable switch (or a latch). There are two designs, differing in what triggers the conducting state. In a three-lead thyristor, a small current on its gate lead controls the larger current of the anode-to-cathode path. In a two-lead thyristor, conduction begins when the potential difference between the anode and cathode themselves is sufficiently large (breakdown voltage). The thyristor continues conducting until the voltage across the device is reverse-biased or the voltage is removed (by some other means), or through the control gate signal on newer types.

Some sources define "silicon-controlled rectifier" (SCR) and "thyristor" as synonymous. Other sources define thyristors as more complex devices that incorporate at least four layers of alternating N-type and P-type substrate.

↓ Menu
HINT:

In this Dossier

Thyristor in the context of TW 6000

The TW 6000 is a type of articulated light rail vehicle used on the Hanover Stadtbahn system, manufactured by Duewag, Linke-Hofmann-Busch, AEG, Kiepe and Siemens.

The vehicle can serve both high platforms and street-level stops; it has cabs at both ends, thus eliminating the need for turning loops. It was unique in Germany at the time for featuring thyristor chopper control and a contemporary design by Herbert Lindinger.

View the full Wikipedia page for TW 6000
↑ Return to Menu

Thyristor in the context of Power electronics

Power electronics is the application of electronics to the control and conversion of electric power.

The first high-power electronic devices were made using mercury-arc valves. In modern systems, the conversion is performed with semiconductor switching devices such as diodes, thyristors, and power transistors such as the power MOSFET and IGBT. In contrast to electronic systems concerned with the transmission and processing of signals and data, substantial amounts of electrical energy are processed in power electronics. An AC/DC converter (rectifier) is the most typical power electronics device found in many consumer electronic devices, e.g. television sets, personal computers, battery chargers, etc. The power range is typically from tens of watts to several hundred watts. In industry, a common application is the variable-speed drive (VSD) that is used to control an induction motor. The power range of VSDs starts from a few hundred watts and ends at tens of megawatts.

View the full Wikipedia page for Power electronics
↑ Return to Menu

Thyristor in the context of Ward Leonard control

Ward Leonard control, also known as the Ward Leonard drive system, was a widely used DC motor speed control system introduced by Harry Ward Leonard in 1891. In the early 1900s, the control system of Ward Leonard was adopted by the U.S. Navy and also used in passenger lifts of large mines. It also provided a solution to a moving sidewalk at the Paris Exposition of 1900, where many others had failed to operate properly. It was applied to railway locomotives used in World War I, and was used in anti-aircraft radars in World War II. Connected to automatic anti-aircraft gun directors, the tracking motion in two dimensions had to be extremely smooth and precise. The MIT Radiation Laboratory selected Ward-Leonard to equip the famous radar SCR-584 in 1942. The Ward Leonard control system was widely used for elevators until thyristor drives became available in the 1980s, because it offered smooth speed control and consistent torque. Many Ward Leonard control systems and variations on them remain in use.

View the full Wikipedia page for Ward Leonard control
↑ Return to Menu

Thyristor in the context of TRIAC

A TRIAC (triode for alternating current; also bidirectional triode thyristor or bilateral triode thyristor) is a three-terminal electronic component that conducts current in either direction when triggered. The term TRIAC is a genericized trademark.

TRIACs are a subset of thyristors (analogous to a relay in that a small voltage and current can control a much larger voltage and current) and are related to silicon controlled rectifiers (SCRs). TRIACs differ from SCRs in that they allow current flow in both directions, whereas an SCR can only conduct current in a single direction. Most TRIACs can be triggered by applying either a positive or negative voltage to the gate (an SCR requires a positive voltage). Once triggered, SCRs and TRIACs continue to conduct, even if the gate current ceases, until the main current drops below a certain level called the holding current.

View the full Wikipedia page for TRIAC
↑ Return to Menu

Thyristor in the context of Silicon controlled rectifier

A silicon controlled rectifier or semiconductor controlled rectifier (SCR) is a four-layer solid-state current-controlling device. The name "silicon controlled rectifier" is General Electric's trade name for a type of thyristor. The principle of four-layer p–n–p–n switching was developed by Moll, Tanenbaum, Goldey, and Holonyak of Bell Laboratories in 1956. The practical demonstration of silicon controlled switching and detailed theoretical behavior of a device in agreement with the experimental results was presented by Dr Ian M. Mackintosh of Bell Laboratories in January 1958. The SCR was developed by a team of power engineers led by Gordon Halland commercialized by Frank W. "Bill" Gutzwiller in 1957.

Some sources define silicon-controlled rectifiers and thyristors as synonymous while other sources define silicon-controlled rectifiers as a proper subset of the set of thyristors; the latter being devices with at least four layers of alternating n- and p-type material. According to Bill Gutzwiller, the terms "SCR" and "controlled rectifier" were earlier, and "thyristor" was applied later, as usage of the device spread internationally.

View the full Wikipedia page for Silicon controlled rectifier
↑ Return to Menu

Thyristor in the context of Mercury-arc valve

A mercury-arc valve or mercury-vapor rectifier or (UK) mercury-arc rectifier is a type of electrical rectifier used for converting high-voltage or high-current alternating current (AC) into direct current (DC). It is a type of cold cathode gas-filled tube, but is unusual in that the cathode, instead of being solid, is made from a pool of liquid mercury and is therefore self-restoring. As a result mercury-arc valves, when used as intended, are far more robust and durable and can carry much higher currents than most other types of gas discharge tube. Some examples have been in continuous service, rectifying 50-ampere currents, for decades.

Invented in 1902 by Peter Cooper Hewitt, mercury-arc rectifiers were used to provide power for industrial motors, electric railways, streetcars, and electric locomotives, as well as for radio transmitters and for high-voltage direct current (HVDC) power transmission. They were the primary method of high power rectification before the advent of semiconductor rectifiers, such as diodes, thyristors and gate turn-off thyristors (GTOs). These solid state rectifiers have almost completely replaced mercury-arc rectifiers thanks to their lower cost, maintenance, and environmental risk, and higher reliability.

View the full Wikipedia page for Mercury-arc valve
↑ Return to Menu

Thyristor in the context of Solid-state relay

A solid state relay (SSR) is an electronic switching device that switches on or off when an external voltage (AC or DC) is applied across its control terminals. They serve the same function as an electromechanical relay, but solid-state electronics contain no moving parts and have a longer operational lifetime. Solid state relays were invented in 1971 by the Crydom Controls division of International Rectifier.

SSRs consist of a sensor which responds to an appropriate input (control signal), an electronic switching device which switches power to the load circuitry, and a coupling mechanism to enable the control signal to activate this switch without mechanical parts. They may be designed to switch either AC or DC loads. Packaged SSRs use power semiconductor devices such as thyristors and transistors, to switch currents up to around a hundred amperes. SSRs have fast switching speeds compared with electromechanical relays, and have no physical contacts to wear out. SSRs are unable to withstand a large momentary overload the way an electromechanical relay can, and have a higher "on" resistance.

View the full Wikipedia page for Solid-state relay
↑ Return to Menu