Solar cell in the context of "Polycrystalline"

Play Trivia Questions online!

or

Skip to study material about Solar cell in the context of "Polycrystalline"

Ad spacer

⭐ Core Definition: Solar cell

A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. It is a type of photoelectric cell, a device whose electrical characteristics (such as current, voltage, or resistance) vary when it is exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as "solar panels". Almost all commercial PV cells consist of crystalline silicon, with a market share of 95%. Cadmium telluride thin-film solar cells account for the remainder. The common single-junction silicon solar cell can produce a maximum open-circuit voltage of approximately 0.5 to 0.6 volts.

Photovoltaic cells may operate under sunlight or artificial light. In addition to producing solar power, they can be used as a photodetector (for example infrared detectors), to detect light or other electromagnetic radiation near the visible light range, as well as to measure light intensity.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Solar cell in the context of Radioisotope thermoelectric generator

A radioisotope thermoelectric generator (RTG, RITEG), or radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect. This type of generator has no moving parts and is ideal for deployment in remote and harsh environments for extended periods with no risk of parts wearing out or malfunctioning.

RTGs are usually the most desirable power source for unmaintained situations that need a few hundred watts (or less) of power for durations too long for fuel cells, batteries, or generators to provide economically, and in places where solar cells are not practical. RTGs have been used as power sources in satellites, space probes, and uncrewed remote facilities such as a series of lighthouses built by the Soviet Union inside the Arctic Circle.

↑ Return to Menu

Solar cell in the context of Semiconductor

A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities ("doping") to its crystal structure. When two regions with different doping levels are present in the same crystal, they form a semiconductor junction. However the term "semiconductors" is sometimes used to refer to semiconductor devices such as microchips and computer processors, which work using the physical properties of semiconductors.

The behavior of charge carriers, which include electrons, ions, and electron holes, at these junctions is the basis of diodes, transistors, and most modern electronics. Some examples of semiconductors are silicon, germanium, gallium arsenide, and elements near the so-called "metalloid staircase" on the periodic table. After silicon, gallium arsenide is the second-most common semiconductor and is used in laser diodes, solar cells, microwave-frequency integrated circuits, and others. Silicon is a critical element for fabricating most electronic circuits.

↑ Return to Menu

Solar cell in the context of Silicon wafer

In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as a crystalline silicon (c-Si, silicium), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells.

The wafer serves as the substrate for microelectronic devices built in and upon the wafer. It undergoes many microfabrication processes, such as doping, ion implantation, etching, thin-film deposition of various materials, and photolithographic patterning. Finally, the individual microcircuits are separated by wafer dicing and packaged as an integrated circuit.

↑ Return to Menu

Solar cell in the context of Photovoltaics

Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially used for electricity generation and as photosensors.

A photovoltaic system employs solar modules, each comprising a number of solar cells, which generate electrical power. PV installations may be ground-mounted, rooftop-mounted, wall-mounted or floating. The mount may be fixed or use a solar tracker to follow the sun across the sky.

↑ Return to Menu

Solar cell in the context of Compound semiconductor

Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductor material is that it can be compromised by doping it with impurities that alter its electronic properties in a controllable way. Because of their application in the computer and photovoltaic industry—in devices such as transistors, lasers, and solar cells—the search for new semiconductor materials and the improvement of existing materials is an important field of study in materials science.

Most commonly used semiconductor materials are crystalline inorganic solids. These materials are classified according to the periodic table groups of their constituent atoms.

↑ Return to Menu

Solar cell in the context of Crystallite

A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains.

Bacillite is a type of crystallite. It is rodlike with parallel longulites.

↑ Return to Menu

Solar cell in the context of Silicone

In organosilicon and polymer chemistry, a silicone or polysiloxane is a polymer composed of repeating units of siloxane (−O−R2Si−O−SiR2, where "R" stands for an organic group). They are typically colorless oils or rubber-like substances. Silicones are used in sealants, adhesives, lubricants, medicine, cooking utensils, thermal insulation, and electrical insulation. Some common forms include silicone oil, grease, rubber, resin, and caulk.

Silicone is often confused with one of its constituent elements, silicon, but they are distinct substances. Silicon is a pure chemical element, a metalloid, which forms a dark-grey semiconducting crystalline solid. In its crystalline form it is used to make integrated circuits ("electronic chips") and solar cells. In contrast, silicone is formed by the polymerization of the siloxane molecule, which itself is made up of a variable combination of carbon, hydrogen, oxygen and silicon atoms. Depending on the chemical makeup and polymer structure of a particular silicone product, it can possess a variety of physical properties, ranging from an oily liquid to a rubbery resin.

↑ Return to Menu

Solar cell in the context of Photodetector

Photodetectors, also called photosensors, are devices that detect light or other forms of electromagnetic radiation and convert it into an electrical signal. They are essential in a wide range of applications, from digital imaging and optical communication to scientific research and industrial automation. Photodetectors can be classified by their mechanism of detection, such as the photoelectric effect, photochemical reactions, or thermal effects, or by performance metrics like spectral response. Common types include photodiodes, phototransistors, and photomultiplier tubes, each suited to specific uses. Solar cells, which convert light into electricity, are also a type of photodetector. This article explores the principles behind photodetectors, their various types, applications, and recent advancements in the field.

↑ Return to Menu