Semiconductor devices in the context of "Semiconductor"

Play Trivia Questions online!

or

Skip to study material about Semiconductor devices in the context of "Semiconductor"

Ad spacer

⭐ Core Definition: Semiconductor devices

A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its conductivity lies between conductors and insulators. Semiconductor devices have replaced vacuum tubes in most applications. They conduct electric current in the solid state, rather than as free electrons across a vacuum (typically liberated by thermionic emission) or as free electrons and ions through an ionized gas.

Semiconductor devices are manufactured both as single discrete devices and as integrated circuits, which consist of two or more devices—which can number from the hundreds to the billions—manufactured and interconnected on a single semiconductor wafer (also called a substrate).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Semiconductor devices in the context of Semiconductor

A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities ("doping") to its crystal structure. When two regions with different doping levels are present in the same crystal, they form a semiconductor junction. However the term "semiconductors" is sometimes used to refer to semiconductor devices such as microchips and computer processors, which work using the physical properties of semiconductors.

The behavior of charge carriers, which include electrons, ions, and electron holes, at these junctions is the basis of diodes, transistors, and most modern electronics. Some examples of semiconductors are silicon, germanium, gallium arsenide, and elements near the so-called "metalloid staircase" on the periodic table. After silicon, gallium arsenide is the second-most common semiconductor and is used in laser diodes, solar cells, microwave-frequency integrated circuits, and others. Silicon is a critical element for fabricating most electronic circuits.

↓ Explore More Topics
In this Dossier

Semiconductor devices in the context of Semiconductor device fabrication

Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as microprocessors, microcontrollers, and memories (such as RAM and flash memory). It is a multiple-step photolithographic and physico-chemical process (with steps such as thermal oxidation, thin-film deposition, ion implantation, etching) during which electronic circuits are gradually created on a wafer, typically made of pure single-crystal semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications. Steps such as etching and photolithography can be used to manufacture other devices, such as LCD and OLED displays.

The fabrication process is performed in highly specialized semiconductor fabrication plants, also called foundries or "fabs", with the central part being the "clean room". In more advanced semiconductor devices, such as modern 14/10/7 nm nodes, fabrication can take up to 15 weeks, with 11–13 weeks being the industry average. Production in advanced fabrication facilities is completely automated, with automated material handling systems taking care of the transport of wafers from machine to machine.

↑ Return to Menu

Semiconductor devices in the context of Semiconductor industry

The semiconductor industry is the aggregate of companies engaged in the design and fabrication of semiconductors and semiconductor devices, such as transistors and integrated circuits. Its roots can be traced to the invention of the transistor by Shockley, Brattain, and Bardeen at Bell Labs in 1948. Bell Labs licensed the technology for $25,000, and soon many companies, including Motorola (1952), Shockley Semiconductor (1955), Sylvania, Centralab, Fairchild Semiconductor and Texas Instruments were making transistors. In 1958 Jack Kilby of Texas Instruments and Robert Noyce of Fairchild independently invented the Integrated Circuit, a method of producing multiple transistors on a single "chip" of Semiconductor material. This kicked off a number of rapid advances in fabrication technology leading to the exponential growth in semiconductor device production, known as Moore's law that has persisted over the past six or so decades. The industry's annual semiconductor sales revenue has since grown to over $481 billion, as of 2018.

In 2010, the semiconductor industry had the highest intensity of Research & Development in the EU and ranked second after Biotechnology in the EU, United States and Japan combined.

↑ Return to Menu

Semiconductor devices in the context of Chih-Tang Sah

Chih-Tang "Tom" Sah (simplified Chinese: 萨支唐; traditional Chinese: 薩支唐; pinyin: Sà Zhītáng; 10 November 1932 – 5 July 2025) is a Chinese-American electronics engineer and condensed matter physicist. He is best known for inventing CMOS (complementary MOS) logic with Frank Wanlass at Fairchild Semiconductor in 1963. CMOS is used in nearly all modern very large-scale integration (VLSI) semiconductor devices.

He was the Pittman Eminent Scholar and a Graduate Research Professor at the University of Florida from 1988 to 2010. He was a Professor of Physics and Professor of Electrical and Computer Engineering, emeritus, at the University of Illinois at Urbana-Champaign, where he taught for 26 years (1962-1988) and guided 40 students to the Ph.D. degree in electrical engineering and in physics and 34 MSEE theses. At the University of Florida, he guided 10 doctoral theses in EE. He has published more than 300 peer-reviewed journal articles with his graduate students and research associates, and presented about 200 invited lectures and 60 contributed papers in China, Europe, Japan, Taiwan and in the United States on transistor physics, technology and evolution.

↑ Return to Menu

Semiconductor devices in the context of Logic family

In computer engineering, a logic family is one of two related concepts:

  • A logic family of monolithic digital integrated circuit devices is a group of electronic logic gates constructed using one of several different designs, usually with compatible logic levels and power supply characteristics within a family. Many logic families were produced as individual components, each containing one or a few related basic logical functions, which could be used as "building-blocks" to create systems or as so-called "glue" to interconnect more complex integrated circuits.
  • A logic family may also be a set of techniques used to implement logic within VLSI integrated circuits such as central processors, memories, or other complex functions. Some such logic families use static techniques to minimize design complexity. Other such logic families, such as domino logic, use clocked dynamic techniques to minimize size, power consumption and delay.

Before the widespread use of integrated circuits, various solid-state and vacuum-tube logic systems were used but these were never as standardized and interoperable as the integrated-circuit devices. The most common logic family in modern semiconductor devices is metal–oxide–semiconductor (MOS) logic, due to low power consumption, small transistor sizes, and high transistor density.

↑ Return to Menu