Soil science in the context of "Regional planning"

Play Trivia Questions online!

or

Skip to study material about Soil science in the context of "Regional planning"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Soil science in the context of Agronomy

Agronomy is the science and technology of producing and using plants by agriculture for food, fuel, fiber, chemicals, recreation, or land conservation. Agronomy has come to include research of plant genetics, plant physiology, meteorology, and soil science. It is the application of a combination of sciences such as biology, chemistry, economics, ecology, earth science, and genetics. Professionals of agronomy are termed agronomists.

↑ Return to Menu

Soil science in the context of Humus

In classical soil science, humus is the dark organic matter in soil that is formed by the decomposition of plant, microbial and animal matter. It is a kind of soil organic matter with distinct properties due to its high surface area. It is rich in nutrients and retains moisture in the soil, more especially in soils with a sandy texture. Humus is the Latin word for "earth" or "ground".

In agriculture, "humus" sometimes also is used to describe mature or natural compost extracted from a woodland or other spontaneous source for use as a soil conditioner. It is also used to describe a topsoil horizon that contains organic matter (humus type, humus form, or humus profile).

↑ Return to Menu

Soil science in the context of Pedology (soil study)

Pedology (from Greek: πέδον, pedon, "soil"; and λόγος, logos, "study") is a discipline within soil science which focuses on understanding and characterizing soil formation, evolution, and the theoretical frameworks for modeling soil bodies, often in the context of the natural environment. Pedology is often seen as one of two main branches of soil inquiry, the other being edaphology which is traditionally more agronomically oriented and focuses on how soil properties influence plant communities (natural or cultivated).

In studying the fundamental phenomenology of soils, e.g. soil formation (aka pedogenesis), pedologists pay particular attention to observing soil morphology and the geographic distributions of soils, and the placement of soil bodies into larger temporal and spatial contexts. In so doing, pedologists develop systems of soil classification, soil maps, and theories for characterizing temporal and spatial interrelations among soils. There are a few noteworthy sub-disciplines of pedology; namely pedometrics and soil geomorphology. Pedometrics focuses on the development of techniques for quantitative characterization of soils, especially for the purposes of mapping soil properties whereas soil geomorphology studies the interrelationships between geomorphic processes and soil formation.

↑ Return to Menu

Soil science in the context of Agricultural economics

Agricultural economics is an applied field of economics concerned with the application of economic theory in optimizing the production and distribution of food and fiber products. Agricultural economics began as a branch of economics that specifically dealt with land usage. It focused on maximizing the crop yield while maintaining a good soil ecosystem. Throughout the 20th century the discipline expanded and the current scope of the discipline is much broader. Agricultural economics today includes a variety of applied areas, having considerable overlap with conventional economics. Agricultural economists have made substantial contributions to research in economics, econometrics, development economics, and environmental economics. Agricultural economics influences food policy, agricultural policy, and environmental policy.

↑ Return to Menu

Soil science in the context of Infiltration (hydrology)

Infiltration is the process by which water on the ground surface enters the soil. It is commonly used in both hydrology and soil sciences. The infiltration capacity is defined as the maximum rate of infiltration. It is most often measured in meters per day but can also be measured in other units of distance over time if necessary.  The infiltration capacity decreases as the soil moisture content of soils surface layers increases. If the precipitation rate exceeds the infiltration rate, runoff will usually occur unless there is some physical barrier.

Infiltrometers, parameters and rainfall simulators are all devices that can be used to measure infiltration rates.

↑ Return to Menu

Soil science in the context of Frost line (astrophysics)

In astronomy or planetary science, the frost line, also known as the snow line or ice line, is the minimum distance from the central protostar of a solar nebula where the temperature is low enough for volatile compounds such as water, ammonia, methane, carbon dioxide and carbon monoxide to condense into solid grains, which will allow their accretion into planetesimals. Beyond the line, otherwise gaseous compounds (which are much more abundant) can be quite easily condensed to allow formation of gas giants and ice giants; while within it, only heavier compounds can be accreted to form the typically much smaller rocky planets.

The term itself is borrowed from the notion of "frost line" in soil science, which describes the maximum depth from the surface that groundwater can freeze.

↑ Return to Menu

Soil science in the context of Robert E. Horton

Robert Elmer Horton (May 18, 1875 – April 22, 1945) was an American hydrologist, geomorphologist, civil engineer, and soil scientist, considered by many to be the father of modern American hydrology. An eponymous medal is awarded by the American Geophysical Union (AGU) to recognize outstanding contributions to the field of hydrological geophysics. The AGU Hydrology section (representing about a 3rd of AGU's membership) was formed largely due to his personal property (near New York) that was bequeathed to AGU.

↑ Return to Menu

Soil science in the context of Geobiology

Geobiology is a field of scientific research that explores the interactions between the physical Earth and the biosphere. It is a relatively young field, and its borders are fluid. There is considerable overlap with the fields of ecology, evolutionary biology, microbiology, paleontology, and particularly soil science and biogeochemistry. Geobiology applies the principles and methods of biology, geology, and soil science to the study of the ancient history of the co-evolution of life and Earth as well as the role of life in the modern world. Geobiologic studies tend to be focused on microorganisms, and on the role that life plays in altering the chemical and physical environment of the pedosphere, which exists at the intersection of the lithosphere, atmosphere, hydrosphere and/or cryosphere. It differs from biogeochemistry in that the focus is on processes and organisms over space and time rather than on global chemical cycles.

Geobiological research synthesizes the geologic record with modern biologic studies. It deals with process - how organisms affect the Earth and vice versa - as well as history - how the Earth and life have changed together. Much research is grounded in the search for fundamental understanding, but geobiology can also be applied, as in the case of microbes that clean up oil spills.

↑ Return to Menu

Soil science in the context of Eluvium

In geology, eluvium or eluvial deposits are geological deposits and soils that are derived by in situ weathering or weathering plus gravitational movement or accumulation.

The process of removal of materials from geological or soil horizons is called eluviation or leaching. There is a difference in the usage of this term in geology and soil science. In soil science, eluviation is the transport of soil material from upper layers of soil to lower levels by downward percolation of water across soil horizons, and accumulation of this material (illuvial deposit) in lower levels is called illuviation. In geology, the removed material is irrelevant, and the deposit (eluvial deposit) is the remaining material. Eluviation occurs when precipitation exceeds evaporation.

↑ Return to Menu