Skewness in the context of "Median"

⭐ In the context of the median, skewness is considered a characteristic that can potentially…

Ad spacer

⭐ Core Definition: Skewness

Skewness in probability theory and statistics is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. Similarly to kurtosis, it provides insights into characteristics of a distribution. The skewness value can be positive, zero, negative, or undefined.

For a unimodal distribution (a distribution with a single peak), negative skew commonly indicates that the tail is on the left side of the distribution, and positive skew indicates that the tail is on the right. In cases where one tail is long but the other tail is fat, skewness does not obey a simple rule. For example, a zero value in skewness means that the tails on both sides of the mean balance out overall; this is the case for a symmetric distribution but can also be true for an asymmetric distribution where one tail is long and thin, and the other is short but fat. Thus, the judgement on the symmetry of a given distribution by using only its skewness is risky; the distribution shape must be taken into account.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Skewness in the context of Median

The median of a set of numbers is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as the “middle" value. The basic feature of the median in describing data compared to the mean (often simply described as the "average") is that it is not skewed by a small proportion of extremely large or small values, and therefore provides a better representation of the center. Median income, for example, may be a better way to describe the center of the income distribution because increases in the largest incomes alone have no effect on the median. For this reason, the median is of central importance in robust statistics.

Median is a 2-quantile; it is the value that partitions a set into two equal parts.

↓ Explore More Topics
In this Dossier

Skewness in the context of Average wage

The national average salary (or national average wage) is the mean salary for the working population of a nation. It is calculated by summing all the annual salaries of all persons in work (surveyed) and dividing the total by the number of workers (surveyed). It is not the same as the Gross domestic product (GDP) per capita, which is calculated by dividing the GDP by the total population of a country, including the unemployed and those not in the workforce (e.g. retired people, children, students, etc.). It can be useful in understanding economic conditions, and to employers and employees in negotiating salaries. The national median salary is usually significantly less than the national average salary because the distribution of workers by salary is skewed.

↑ Return to Menu

Skewness in the context of Descriptive statistics

A descriptive statistic (in the count noun sense) is a summary statistic that quantitatively describes or summarizes features from a collection of information, while descriptive statistics (in the mass noun sense) is the process of using and analysing those statistics. Descriptive statistics is distinguished from inferential statistics (or inductive statistics) by its aim to summarize a sample, rather than use the data to learn about the population that the sample of data is thought to represent. This generally means that descriptive statistics, unlike inferential statistics, is not developed on the basis of probability theory, and are frequently nonparametric statistics. Even when a data analysis draws its main conclusions using inferential statistics, descriptive statistics are generally also presented. For example, in papers reporting on human subjects, typically a table is included giving the overall sample size, sample sizes in important subgroups (e.g., for each treatment or exposure group), and demographic or clinical characteristics such as the average age, the proportion of subjects of each sex, the proportion of subjects with related co-morbidities, etc.

Some measures that are commonly used to describe a data set are measures of central tendency and measures of variability or dispersion. Measures of central tendency include the mean, median and mode, while measures of variability include the standard deviation (or variance), the minimum and maximum values of the variables, kurtosis and skewness.

↑ Return to Menu

Skewness in the context of Average

An average of a collection or group is a value that is most central or most common in some sense, and represents its overall position.

In mathematics, especially in colloquial usage, it most commonly refers to the arithmetic mean, so the "average" of the list of numbers [2, 3, 4, 7, 9] is generally considered to be (2+3+4+7+9)/5 = 25/5 = 5. In situations where the data is skewed or has outliers, and it is desired to focus on the main part of the group rather than the long tail, "average" often instead refers to the median; for example, the average personal income is usually given as the median income, so that it represents the majority of the population rather than being overly influenced by the much higher incomes of the few rich people. In certain real-world scenarios, such computing the average speed from multiple measurements taken over the same distance, the average used is the harmonic mean. In situations where a histogram or probability density function is being referenced, the "average" could instead refer to the mode. Other statistics that can be used as an average include the mid-range and geometric mean, but they would rarely, if ever, be colloquially referred to as "the average".

↑ Return to Menu

Skewness in the context of Outlier

In statistics, an outlier is a data point that differs significantly from other observations. An outlier may be due to a variability in the measurement, an indication of novel data, or it may be the result of experimental error; the latter are sometimes excluded from the data set. An outlier can be an indication of exciting possibility, but can also cause serious problems in statistical analyses.

Outliers can occur by chance in any distribution, but they can indicate novel behaviour or structures in the data-set, measurement error, or that the population has a heavy-tailed distribution. In the case of measurement error, one wishes to discard them or use statistics that are robust to outliers, while in the case of heavy-tailed distributions, they indicate that the distribution has high skewness and that one should be very cautious in using tools or intuitions that assume a normal distribution. A frequent cause of outliers is a mixture of two distributions, which may be two distinct sub-populations, or may indicate 'correct trial' versus 'measurement error'; this is modeled by a mixture model.

↑ Return to Menu

Skewness in the context of Quartile

In statistics, quartiles are a type of quantiles which divide the number of data points into four parts, or quarters, of more-or-less equal size. The data must be ordered from smallest to largest to compute quartiles; as such, quartiles are a form of order statistic. The three quartiles, resulting in four data divisions, are as follows:

Along with the minimum and maximum of the data (which are also quartiles), the three quartiles described above provide a five-number summary of the data. This summary is important in statistics because it provides information about both the center and the spread of the data. Knowing the lower and upper quartile provides information on how big the spread is and if the dataset is skewed toward one side. Since quartiles divide the number of data points evenly, the range is generally not the same between adjacent quartiles (i.e. usually (Q3 - Q2) ≠ (Q2 - Q1)). Interquartile range (IQR) is defined as the difference between the 75th and 25th percentiles or Q3 - Q1. While the maximum and minimum also show the spread of the data, the upper and lower quartiles can provide more detailed information on the location of specific data points, the presence of outliers in the data, and the difference in spread between the middle 50% of the data and the outer data points.

↑ Return to Menu

Skewness in the context of Kurtosis

Kurtosis (from Greek: κυρτός (kyrtos or kurtos), meaning 'curved, arching') refers to the degree of tailedness in the probability distribution of a real-valued, random variable in probability theory and statistics. Similar to skewness, kurtosis provides insight into specific characteristics of a distribution. Various methods exist for quantifying kurtosis in theoretical distributions, and corresponding techniques allow estimation based on sample data from a population. It is important to note that different measures of kurtosis can yield varying interpretations.

The standard measure of a distribution's kurtosis, originating with Karl Pearson, is a scaled version of the fourth moment of the distribution. This number is related to the tails of the distribution, not its peak; hence, the sometimes-seen characterization of kurtosis as peakedness is incorrect. For this measure, higher kurtosis corresponds to greater extremity of deviations (or outliers), and not the configuration of data near the mean.

↑ Return to Menu

Skewness in the context of Summary statistic

In descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible. Statisticians commonly try to describe the observations in

A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot.

↑ Return to Menu