Silicon-burning process in the context of Type II supernova


Silicon-burning process in the context of Type II supernova

Silicon-burning process Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Silicon-burning process in the context of "Type II supernova"


⭐ Core Definition: Silicon-burning process

In astrophysics, silicon burning is a very brief sequence of nuclear fusion reactions that occur in massive stars with a minimum of about 8–11 solar masses. Silicon burning is the final stage of fusion for massive stars that have run out of the fuels that power them for their long lives in the main sequence on the Hertzsprung–Russell diagram. It follows the previous stages of hydrogen, helium, carbon, neon and oxygen burning processes.

Silicon burning begins when gravitational contraction raises the star's core temperature to 2.7–3.5 billion kelvin (GK). The exact temperature depends on mass. When a star has completed the silicon-burning phase, no further fusion is possible. The star catastrophically collapses and may explode in what is known as a Type II supernova.

↓ Menu
HINT:

In this Dossier

Silicon-burning process in the context of Supernova nucleosynthesis

Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.

In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, neon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after compressional heating, the fuel for the subsequent burning stage. In this context, the word "burning" refers to nuclear fusion and not a chemical reaction.

View the full Wikipedia page for Supernova nucleosynthesis
↑ Return to Menu

Silicon-burning process in the context of Iron peak

The iron peak is a local maximum in the vicinity of Fe (Cr, Mn, Fe, Co and Ni) on the graph of the abundances of the chemical elements.

For elements lighter than iron on the periodic table, nuclear fusion releases energy. For iron, and for all of the heavier elements, nuclear fusion consumes energy. Chemical elements up to the iron peak are produced in ordinary stellar nucleosynthesis, with the alpha elements being particularly abundant. Some heavier elements are produced by less efficient processes such as the r-process and s-process. Elements with atomic numbers close to iron are produced in large quantities in supernovae due to explosive oxygen and silicon fusion, followed by radioactive decay of nuclei such as Nickel-56. On average, heavier elements are less abundant in the universe, but some of those near iron are comparatively more abundant than would be expected from this trend.

View the full Wikipedia page for Iron peak
↑ Return to Menu

Silicon-burning process in the context of Oxygen-burning process

The oxygen-burning process is a set of nuclear fusion reactions that take place in massive stars that have used up the lighter elements in their cores. Oxygen-burning is preceded by the neon-burning process and succeeded by the silicon-burning process. As the neon-burning process ends, the core of the star contracts and heats until it reaches the ignition temperature for oxygen burning. Oxygen burning reactions are similar to those of carbon burning; however, they must occur at higher temperatures and densities due to the larger Coulomb barrier of oxygen.

View the full Wikipedia page for Oxygen-burning process
↑ Return to Menu