R-process in the context of "Iron peak"

Play Trivia Questions online!

or

Skip to study material about R-process in the context of "Iron peak"

Ad spacer

⭐ Core Definition: R-process

In nuclear astrophysics, the rapid neutron-capture process, also known as the r-process, is a set of nuclear reactions that is responsible for the creation of approximately half of the atomic nuclei heavier than iron, the "heavy elements", with the other half produced largely by the s-process. The r-process synthesizes the more neutron-rich of the stable isotopes of even elements, and those separated from the beta-stable isotopes by those that are not often have very low s-process yields and are considered r-only nuclei; the heaviest isotopes of most even elements from zinc to mercury fall into this category. Abundance peaks for the r-process occur near mass numbers A = 82 (elements Se, Br, and Kr), A = 130 (elements Te, I, and Xe) and A = 196 (elements Os, Ir, and Pt). Further, all the elements heavier than bismuth, including natural thorium and uranium (and other actinides) must ultimately originate in an r-process nucleus.

The r-process entails a succession of rapid neutron captures (hence the name) by one or more heavy seed nuclei, typically beginning with nuclei in the abundance peak centered on Fe. The captures must be rapid in the sense that the nuclei must not have time to undergo radioactive decay (typically via β decay) before another neutron arrives to be captured. This sequence can continue up to the limit of stability of the increasingly neutron-rich nuclei (the neutron drip line) to physically retain neutrons as governed by the short range nuclear force. The r-process therefore must occur in locations where there exists a high density of free neutrons. At some time following the neutron captures, the nucleus beta-decays back to the line of stability (just as with fission products) resulting in a stable isotope of the same mass number A, and normally the most neutron-rich of those.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 R-process in the context of Iron peak

The iron peak is a local maximum in the vicinity of Fe (Cr, Mn, Fe, Co and Ni) on the graph of the abundances of the chemical elements.

For elements lighter than iron on the periodic table, nuclear fusion releases energy. For iron, and for all of the heavier elements, nuclear fusion consumes energy. Chemical elements up to the iron peak are produced in ordinary stellar nucleosynthesis, with the alpha elements being particularly abundant. Some heavier elements are produced by less efficient processes such as the r-process and s-process. Elements with atomic numbers close to iron are produced in large quantities in supernovae due to explosive oxygen and silicon fusion, followed by radioactive decay of nuclei such as Nickel-56. On average, heavier elements are less abundant in the universe, but some of those near iron are comparatively more abundant than would be expected from this trend.

↓ Explore More Topics
In this Dossier

R-process in the context of Neutron star merger

A neutron star merger is the stellar collision of neutron stars. When two neutron stars fall into mutual orbit, they gradually spiral inward due to the loss of energy emitted as gravitational radiation. When they finally meet, their merger leads to the formation of either a more massive neutron star, or—if the mass of the remnant exceeds the Tolman–Oppenheimer–Volkoff limit—a black hole. The merger can create a magnetic field that is trillions of times stronger than that of Earth in a matter of one or two milliseconds. The immediate event creates a short gamma-ray burst (sGRB) visible over hundreds of millions, or even billions of light-years.

The merger of neutron stars momentarily creates an environment of such extreme neutron flux that the r-process can occur. This reaction accounts for the nucleosynthesis of around half of the isotopes in elements heavier than iron.

↑ Return to Menu

R-process in the context of Nucleosynthesis

Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis. After about 20 minutes, the universe had expanded and cooled to a point at which these high-energy collisions among nucleons ended, so only the fastest and simplest reactions occurred, leaving our universe containing hydrogen and helium. The rest is traces of other elements such as lithium and the hydrogen isotope deuterium. Nucleosynthesis in stars and their explosions later produced the variety of elements and isotopes that we have today, in a process called cosmic chemical evolution. The amounts of total mass in elements heavier than hydrogen and helium (called 'metals' by astrophysicists) remains small (few percent), so that the universe still has approximately the same composition.

Stars fuse light elements to heavier ones in their cores, giving off energy in the process known as stellar nucleosynthesis. Nuclear fusion reactions create many of the lighter elements, up to and including iron and nickel in the most massive stars. Products of stellar nucleosynthesis remain trapped in stellar cores and remnants except if ejected through stellar winds and explosions. The neutron capture reactions of the r-process and s-process create heavier elements, from iron upwards.

↑ Return to Menu

R-process in the context of Neutron capture

Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, which are repelled electrostatically.

Neutron capture plays a significant role in the cosmic nucleosynthesis of heavy elements. In stars it can proceed in two ways: as a rapid process (r-process) or a slow process (s-process). Nuclei of masses greater than 56 cannot be formed by exothermic thermonuclear reactions (i.e., by nuclear fusion) but can be formed by neutron capture.Neutron capture on protons yields a line at 2.223 MeV predicted and commonly observed in solar flares.

↑ Return to Menu

R-process in the context of Spontaneous fission

Spontaneous fission (SF) is a form of radioactive decay in which a heavy atomic nucleus splits into two or more lighter nuclei. In contrast to induced fission, there is no inciting particle to trigger the decay; it is a purely probabilistic process.

Spontaneous fission is a dominant decay mode for superheavy elements, with nuclear stability generally falling as nuclear mass increases. It thus forms a practical limit to heavy element nucleon number. Heavier nuclides may be created instantaneously by physical processes, both natural (via the r-process) and artificial, though rapidly decay to more stable nuclides. As such, apart from minor decay branches in primordial radionuclides, spontaneous fission is not observed in nature.

↑ Return to Menu