Iron peak in the context of Silicon-burning process


Iron peak in the context of Silicon-burning process

Iron peak Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Iron peak in the context of "Silicon-burning process"


⭐ Core Definition: Iron peak

The iron peak is a local maximum in the vicinity of Fe (Cr, Mn, Fe, Co and Ni) on the graph of the abundances of the chemical elements.

For elements lighter than iron on the periodic table, nuclear fusion releases energy. For iron, and for all of the heavier elements, nuclear fusion consumes energy. Chemical elements up to the iron peak are produced in ordinary stellar nucleosynthesis, with the alpha elements being particularly abundant. Some heavier elements are produced by less efficient processes such as the r-process and s-process. Elements with atomic numbers close to iron are produced in large quantities in supernovae due to explosive oxygen and silicon fusion, followed by radioactive decay of nuclei such as Nickel-56. On average, heavier elements are less abundant in the universe, but some of those near iron are comparatively more abundant than would be expected from this trend.

↓ Menu
HINT:

In this Dossier

Iron peak in the context of HR 8799

HR 8799 is a roughly 30 million-year-old main-sequence star located 133.3 light-years (40.9 parsecs) away from Earth in the constellation of Pegasus. It has roughly 1.5 times the Sun's mass and 4.9 times its luminosity. It is part of a system that also contains a debris disk and at least four massive planets. These planets were the first exoplanets whose orbital motion was confirmed by direct imaging. The star is a Gamma Doradus variable: its luminosity changes because of non-radial pulsations of its surface. The star is also classified as a Lambda Boötis star, which means its surface layers are depleted in iron peak elements. It is the only known star which is simultaneously a Gamma Doradus variable, a Lambda Boötis type, and a Vega-like star (a star with excess infrared emission caused by a circumstellar disk).

View the full Wikipedia page for HR 8799
↑ Return to Menu

Iron peak in the context of Neutron capture

Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, which are repelled electrostatically.

Neutron capture plays a significant role in the cosmic nucleosynthesis of heavy elements. In stars it can proceed in two ways: as a rapid process (r-process) or a slow process (s-process). Nuclei of masses greater than 56 cannot be formed by exothermic thermonuclear reactions (i.e., by nuclear fusion) but can be formed by neutron capture.Neutron capture on protons yields a line at 2.223 MeV predicted and commonly observed in solar flares.

View the full Wikipedia page for Neutron capture
↑ Return to Menu

Iron peak in the context of Lambda Boötis star

A Lambda Boötis star is a type of chemically peculiar star which has an unusually low abundance of iron peak elements in its surface layers. One possible explanation for this is that it is the result of accretion of metal-poor gas from a circumstellar disc, and a second possibility is the accretion of material from a hot Jupiter suffering from mass loss. The prototype is Lambda Boötis.

View the full Wikipedia page for Lambda Boötis star
↑ Return to Menu