Shot noise in the context of "Hardware random number generator"

Play Trivia Questions online!

or

Skip to study material about Shot noise in the context of "Hardware random number generator"




⭐ Core Definition: Shot noise

Shot noise or Poisson noise is a type of noise which can be modeled by a Poisson process.

In electronics shot noise originates from the discrete nature of electric charge. Shot noise also occurs in photon counting in optical devices, where shot noise is associated with the particle nature of light.

↓ Menu

👉 Shot noise in the context of Hardware random number generator

In computing, a hardware random number generator (HRNG), true random number generator (TRNG), non-deterministic random bit generator (NRBG), or physical random number generator is a device that generates random numbers from a physical process capable of producing entropy, unlike a pseudorandom number generator (PRNG) that utilizes a deterministic algorithm and non-physical nondeterministic random bit generators that do not include hardware dedicated to generation of entropy.

Many natural phenomena generate low-level, statistically random "noise" signals, including thermal and shot noise, jitter and metastability of electronic circuits, Brownian motion, and atmospheric noise. Researchers also used the photoelectric effect, involving a beam splitter, other quantum phenomena, and even nuclear decay (due to practical considerations the latter, as well as the atmospheric noise, is not viable except for fairly restricted applications or online distribution services). While "classical" (non-quantum) phenomena are not truly random, an unpredictable physical system is usually acceptable as a source of randomness, so the qualifiers "true" and "physical" are used interchangeably.

↓ Explore More Topics
In this Dossier

Shot noise in the context of Statistical fluctuations

Statistical fluctuations are fluctuations in quantities derived from many identical random processes. They are fundamental and unavoidable. It can be proved that the relative fluctuations reduce as the square root of the number of identical processes.

Statistical fluctuations are responsible for many results of statistical mechanics and thermodynamics, including phenomena such as shot noise in electronics.

↑ Return to Menu

Shot noise in the context of Quantum noise

Quantum noise is a type of noise in a quantum system due to quantum mechanical phenomena such as quantized fields and the uncertainty principle. This principle says that some observables cannot simultaneously be known with arbitrary precision. This indeterminate state of matter introduces a fluctuation in the value of properties of a quantum system, even at zero temperature. These fluctuations in the absence of thermal noise are known as zero-point energy fluctuations.

Quantum noise can also come from the discrete nature of the small quantum constituents such as electrons and quantum effects, such as photocurrents. An example of this form of quantum noise is shot noise as coined by J. Verdeyen which comes from the discrete arrival of photons or electrons in a detector. Because these quanta arrive randomly in time, even a perfectly steady current or light beam exhibits fluctuations in the detected signal.

↑ Return to Menu