Shear force in the context of "Beam (structure)"

Play Trivia Questions online!

or

Skip to study material about Shear force in the context of "Beam (structure)"

Ad spacer

⭐ Core Definition: Shear force

In solid mechanics, shearing forces are unaligned forces acting on one part of a body in a specific direction, and another part of the body in the opposite direction. When the forces are collinear (aligned with each other), they are called tension forces or compression forces. Shear force can also be defined in terms of planes: "If a plane is passed through a body, a force acting along this plane is called a shear force or shearing force."

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Shear force in the context of Beam (structure)

A beam is a structural element that primarily resists loads applied laterally across its axis (an element designed to carry a load pushing parallel to its axis would be a strut or column). A beam's mode of deflection is primarily by bending, as loads produce reaction forces at the beam's support points and internal bending moments, shear, stresses, strains, and deflections. Beams are characterized by their manner of support, profile (shape of cross-section), equilibrium conditions, length, and material.

Beams are traditionally descriptions of building or civil engineering structural elements, where the beams are horizontal and carry vertical loads. However, any structure may contain beams, such as automobile frames, aircraft components, machine frames, and other mechanical or structural systems. Any structural element, in any orientation, that primarily resists loads applied laterally across the element's axis is a beam.

↓ Explore More Topics
In this Dossier

Shear force in the context of Fluid

In physics, a fluid is a liquid, gas, or other material that may continuously move and deform (flow) under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear force applied to them.

Although the term fluid generally includes both the liquid and gas phases, its definition varies among branches of science. Definitions of solid vary as well, and depending on field, some substances can have both fluid and solid properties. Non-Newtonian fluids like Silly Putty appear to behave similar to a solid when a sudden force is applied. Substances with a very high viscosity such as pitch appear to behave like a solid (see pitch drop experiment) as well. In particle physics, the concept is extended to include fluidic matters other than liquids or gases. A fluid in medicine or biology refers to any liquid constituent of the body (body fluid), whereas "liquid" is not used in this sense. Sometimes liquids given for fluid replacement, either by drinking or by injection, are also called fluids (e.g. "drink plenty of fluids"). In hydraulics, fluid is a term which refers to liquids with certain properties, and is broader than (hydraulic) oils.

↑ Return to Menu

Shear force in the context of Tripod

A tripod is a portable three-legged frame or stand, used as a platform for supporting the weight and maintaining the stability of some other object. The three-legged (triangular stance) design provides good stability against gravitational loads as well as horizontal shear forces, and better leverage for resisting tipping over due to lateral forces can be achieved by spreading the legs away from the vertical centre.Variations with one, two, and four legs are termed monopod, bipod, and quadripod (similar to a table).

↑ Return to Menu

Shear force in the context of Shear stress

Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

↑ Return to Menu

Shear force in the context of Mortars and pestles

A mortar and pestle is a set of two simple tools used to prepare ingredients or substances by crushing and grinding them into a fine paste or powder in the kitchen, laboratory, and pharmacy. The mortar (/ˈmɔːrtər/) is characteristically a bowl, typically made of hardwood, metal, ceramic, or hard stone such as granite. The pestle (/ˈpɛsəl/, also US: /ˈpɛstəl/) is a blunt, club-shaped object. The substance to be ground, which may be wet or dry, is placed in the mortar where the pestle is pounded, pressed, or rotated into the substance until the desired texture is achieved.

Mortars and pestles have been used in cooking since the Stone Age; today they are typically associated with the pharmacy profession due to their historical use in preparing medicines. They are used in chemistry settings for pulverizing small amounts of chemicals; in arts and cosmetics for pulverizing pigments, binders, and other substances; in ceramics for making grog; in masonry and other types of construction requiring pulverized materials. In cooking, they are typically used to crush spices, to make pesto, and certain cocktails such as the mojito, which requires the gentle crushing of sugar, ice, and mint leaves in the glass with a pestle.

↑ Return to Menu

Shear force in the context of Rivet

A rivet is a permanent mechanical fastener. Before being installed, a rivet consists of a smooth cylindrical shaft with a head on one end. The end opposite the head is called the tail. On installation, the deformed end is called the shop head or buck-tail.

Because there is effectively a head on each end of an installed rivet, it can support tension loads. However, it is much more capable of supporting shear loads (loads perpendicular to the axis of the shaft).

↑ Return to Menu

Shear force in the context of Traction (engineering)

Traction, traction force or tractive force is a force used to generate motion between a body and a tangential surface, through the use of either dry friction or shear force.It has important applications in vehicles, as in tractive effort.

Traction can also refer to the maximum tractive force between a body and a surface, as limited by available friction; when this is the case, traction is often expressed as the ratio of the maximum tractive force to the normal force and is termed the coefficient of traction (similar to coefficient of friction). It is the force which makes an object move over the surface by overcoming all the resisting forces like friction, normal loads (load acting on the tiers in negative Z axis), air resistance, rolling resistance, etc.

↑ Return to Menu

Shear force in the context of Bending moment

In solid mechanics, a bending moment is the reaction induced in a structural element when an external force or moment is applied to the element, causing the element to bend. The most common or simplest structural element subjected to bending moments is the beam. The diagram shows a beam which is simply supported (free to rotate and therefore lacking bending moments) at both ends; the ends can only react to the shear loads. Other beams can have both ends fixed (known as encastre beam); therefore each end support has both bending moments and shear reaction loads. Beams can also have one end fixed and one end simply supported. The simplest type of beam is the cantilever, which is fixed at one end and is free at the other end (neither simple nor fixed). In reality, beam supports are usually neither absolutely fixed nor absolutely rotating freely.

The internal reaction loads in a cross-section of the structural element can be resolved into a resultant force and a resultant couple. For equilibrium, the moment created by external forces/moments must be balanced by the couple induced by the internal loads. The resultant internal couple is called the bending moment while the resultant internal force is called the shear force (if it is along the plane of element) or the normal force (if it is transverse to the plane of the element). Normal force is also termed as axial force.

↑ Return to Menu