Semiconductor package in the context of Chip carrier


Semiconductor package in the context of Chip carrier

Semiconductor package Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Semiconductor package in the context of "Chip carrier"


⭐ Core Definition: Semiconductor package

A semiconductor package is a metal, plastic, glass, or ceramic casing containing one or more discrete semiconductor devices or integrated circuits. Individual components are fabricated on semiconductor wafers (commonly silicon) before being diced into die, tested, and packaged. The package provides a means for connecting it to the external environment, such as printed circuit board, via leads such as lands, balls, or pins; and protection against threats such as mechanical impact, chemical contamination, and light exposure. Additionally, it helps dissipate heat produced by the device, with or without the aid of a heat spreader. There are thousands of package types in use. Some are defined by international, national, or industry standards, while others are particular to an individual manufacturer.

↓ Menu
HINT:

👉 Semiconductor package in the context of Chip carrier

In electronics, a chip carrier is one of several kinds of surface-mount technology packages for integrated circuits (commonly called "chips"). Connections are made on all four edges of a square package, the outer edges of which contain metal pins that carry power and signals to and from the rest of the system. Compared to the internal cavity that holds the integrated circuit, the overall size of the package is large to provide room for robust pins.

↓ Explore More Topics
In this Dossier

Semiconductor package in the context of D2PAK

The Double Decawatt Package, D2PAK, SOT404 or DDPAK, standardized as TO-263, is a semiconductor package type intended for surface mounting on circuit boards. The TO-263 is designed by Motorola. They are similar to the earlier TO-220-style packages intended for high power dissipation but lack the extended metal tab and mounting hole, while representing a larger version of the TO-252, also known as DPAK, SMT package. As with all SMT packages, the pins on a D2PAK are bent to lie against the PCB surface. The TO-263 can have 3 to 7 terminals.

View the full Wikipedia page for D2PAK
↑ Return to Menu

Semiconductor package in the context of Integrated circuit packaging

Integrated circuit packaging is the final stage of semiconductor device fabrication, in which the die is encapsulated in a supporting case that prevents physical damage and corrosion. The case, known as a "package", supports the electrical contacts which connect the device to a circuit board.

The packaging stage is followed by testing of the integrated circuit.

View the full Wikipedia page for Integrated circuit packaging
↑ Return to Menu

Semiconductor package in the context of TO-220

The TO-220 is a style of electronic package used for high-powered, through-hole components with 0.1 inches (2.54 mm) pin spacing. The "TO" designation stands for "transistor outline". TO-220 packages have three leads. Similar packages with two, four, five or seven leads are also manufactured. A notable characteristic is a metal tab with a hole, used to mount the case to a heatsink, allowing the component to dissipate more heat than one constructed in a TO-92 case. Common TO-220-packaged components include discrete semiconductors such as transistors and silicon-controlled rectifiers, as well as integrated circuits.

View the full Wikipedia page for TO-220
↑ Return to Menu

Semiconductor package in the context of TO-252

TO-252, also known as DPAK or Decawatt Package, is a semiconductor package developed by Motorola for surface mounting on circuit boards. It represents a surface-mount variant of TO-251 package, and smaller variant of the D2PAK package. It is often used for high-power MOSFETs and voltage regulators.

View the full Wikipedia page for TO-252
↑ Return to Menu

Semiconductor package in the context of List of electronic component packaging types

Integrated circuits and certain other electronic components are put into protective packages to allow easy handling and assembly onto printed circuit boards and to protect the devices from damage. A very large number of package types exist. Some package types have standardized dimensions and tolerances, and are registered with trade industry associations such as JEDEC and Pro Electron. Other types are proprietary designations that may be made by only one or two manufacturers. Integrated circuit packaging is the last assembly process before testing and shipping devices to customers.

Occasionally specially-processed integrated circuit dies are prepared for direct connections to a substrate without an intermediate header or carrier. In flip chip systems the IC is connected by solder bumps to a substrate. In beam-lead technology, the metallized pads that would be used for wire bonding connections in a conventional chip are thickened and extended to allow external connections to the circuit. Assemblies using "bare" chips have additional packaging or filling with epoxy to protect the devices from moisture.

View the full Wikipedia page for List of electronic component packaging types
↑ Return to Menu

Semiconductor package in the context of Dual in-line package

In microelectronics, a dual in-line package (DIP or DIL) is an electronic component package with a rectangular housing and two parallel rows of electrical connecting pins. The package may be through-hole mounted to a printed circuit board (PCB) or inserted in a socket. The dual-inline format was invented by Don Forbes, Rex Rice and Bryant Rogers at Fairchild R&D in 1964, when the restricted number of leads available on circular transistor-style packages became a limitation in the use of integrated circuits. Increasingly complex circuits required more signal and power supply leads (as observed in Rent's rule); eventually microprocessors and similar complex devices required more leads than could be put on a DIP package, leading to development of higher-density chip carriers. Furthermore, square and rectangular packages made it easier to route printed-circuit traces beneath the packages.

A DIP is usually referred to as a DIPn, where n is the total number of pins, and sometimes appended with the row-to-row package width "N" for narrow (0.3") or "W" for wide (0.6"). For example, a microcircuit package with two rows of seven vertical leads would be a DIP14 or DIP14N. The photograph at the upper right shows three DIP14 ICs. Common packages have as few as four and as many as 64 leads. Many analog and digital integrated circuit types are available in DIP packages, as are arrays of transistors, switches, light emitting diodes, and resistors. DIP plugs for ribbon cables can be used with standard IC sockets.

View the full Wikipedia page for Dual in-line package
↑ Return to Menu