Secondary electrons in the context of Ionization potential


Secondary electrons in the context of Ionization potential

Secondary electrons Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Secondary electrons in the context of "Ionization potential"


⭐ Core Definition: Secondary electrons

Secondary electrons are electrons generated as ionization products. They are called 'secondary' because they are generated by other radiation (the primary radiation). This radiation can be in the form of ions, electrons, or photons with sufficiently high energy, i.e. exceeding the ionization potential. Photoelectrons can be considered an example of secondary electrons where the primary radiation are photons; in some discussions photoelectrons with higher energy (>50 eV) are still considered "primary" while the electrons freed by the photoelectrons are "secondary".

↓ Menu
HINT:

In this Dossier

Secondary electrons in the context of Scanning electron microscope

A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that contain information about the surface topography and composition. The electron beam is scanned in a raster scan pattern, and the position of the beam is combined with the intensity of the detected signal to produce an image. In the most common SEM mode, secondary electrons emitted by atoms excited by the electron beam are detected using a secondary electron detector (Everhart–Thornley detector). The number of secondary electrons that can be detected, and thus the signal intensity, depends, among other things, on specimen topography. Some SEMs can achieve resolutions better than 1 nanometer.

Specimens are observed in high vacuum in a conventional SEM, or in low vacuum or wet conditions in a variable pressure or environmental SEM, and at a wide range of cryogenic or elevated temperatures with specialized instruments.

View the full Wikipedia page for Scanning electron microscope
↑ Return to Menu

Secondary electrons in the context of Everhart–Thornley detector

The Everhart–Thornley detector (E–T detector or ET detector) is a secondary electron and back-scattered electron detector used in scanning electron microscopes (SEMs). It is named after its designers, Thomas E. Everhart and Richard F. M. Thornley, who in 1960 published their design to increase the efficiency of existing secondary electron detectors by adding a light pipe to carry the photon signal from the scintillator inside the evacuated specimen chamber of the SEM to the photomultiplier outside the chamber. Prior to this Everhart had improved a design for a secondary electron detection by Vladimir Zworykin and Jan A. Rajchman by changing the electron multiplier to a photomultiplier. The Everhart–Thornley Detector with its lightguide and highly efficient photomultiplier is the most frequently used detector in SEMs.

The detector consists primarily of a scintillator inside a Faraday cage inside the specimen chamber of the microscope. A low positive voltage is applied to the Faraday cage to attract the relatively low energy (less than 50 eV by definition) secondary electrons. Other electrons within the specimen chamber are not attracted by this low voltage and will only reach the detector if their direction of travel takes them to it. The scintillator has a high positive voltage (in the nature of 10,000 V) to accelerate the incoming electrons to it where they can be converted to light photons. The direction of their travel is focused to the lightguide by a metal coating on the scintillator acting as a mirror. In the light pipe the photons travel outside of the microscope's vacuum chamber to a photomultiplier tube for amplification.

View the full Wikipedia page for Everhart–Thornley detector
↑ Return to Menu