Electron scattering in the context of Secondary electrons


Electron scattering in the context of Secondary electrons

Electron scattering Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Electron scattering in the context of "Secondary electrons"


⭐ Core Definition: Electron scattering

Electron scattering occurs when electrons are displaced from their original trajectory. This is due to the electrostatic forces within matter or, if an external magnetic field is present, the electron may be deflected by the Lorentz force. This scattering typically happens with solids such as metals, semiconductors and insulators; and is a limiting factor in integrated circuits and transistors.

Electron scattering has many applications ranging from the use of swift electron in electron microscopes to very high energies for hadronic systems that allows the measurement of the distribution of charges for nucleons and nuclear structure. The scattering of electrons has allowed us to understand many details about the atomic structure, from the ordering of atoms to that protons and neutrons are made up of the smaller elementary subatomic particles called quarks.

↓ Menu
HINT:

👉 Electron scattering in the context of Secondary electrons

Secondary electrons are electrons generated as ionization products. They are called 'secondary' because they are generated by other radiation (the primary radiation). This radiation can be in the form of ions, electrons, or photons with sufficiently high energy, i.e. exceeding the ionization potential. Photoelectrons can be considered an example of secondary electrons where the primary radiation are photons; in some discussions photoelectrons with higher energy (>50 eV) are still considered "primary" while the electrons freed by the photoelectrons are "secondary".

↓ Explore More Topics
In this Dossier

Electron scattering in the context of Eddington limit

The Eddington luminosity, also referred to as the Eddington limit, is the maximum luminosity a body (such as a star) can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. The state of balance is called hydrostatic equilibrium. When a star exceeds the Eddington luminosity, it will initiate a very intense radiation-driven stellar wind from its outer layers. Since most massive stars have luminosities far below the Eddington luminosity, their winds are driven mostly by the less intense line absorption. The Eddington limit is invoked to explain the observed luminosities of accreting black holes such as quasars.

Originally, Sir Arthur Eddington took only the electron scattering into account when calculating this limit, something that now is called the classical Eddington limit. Nowadays, the modified Eddington limit also takes into account other radiation processes such as bound–free and free–free radiation interaction.

View the full Wikipedia page for Eddington limit
↑ Return to Menu