Search algorithm in the context of Hash table


Search algorithm in the context of Hash table

Search algorithm Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Search algorithm in the context of "Hash table"


⭐ Core Definition: Search algorithm

In computer science, a search algorithm is an algorithm designed to solve a search problem. Search algorithms work to retrieve information stored within particular data structure, or calculated in the search space of a problem domain, with either discrete or continuous values.

Although search engines use search algorithms, they belong to the study of information retrieval, not algorithmics.

↓ Menu
HINT:

In this Dossier

Search algorithm in the context of Heuristic (computer science)

In mathematical optimization and computer science, heuristic (from Greek εὑρίσκω eurísko "I find, discover") is a technique designed for problem solving more quickly when classic methods are too slow for finding an exact or approximate solution, or when classic methods fail to find any exact solution in a search space. This is achieved by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut.

A heuristic function, also simply called a heuristic, is a function that ranks alternatives in search algorithms at each branching step based on available information to decide which branch to follow. For example, it may approximate the exact solution.

View the full Wikipedia page for Heuristic (computer science)
↑ Return to Menu

Search algorithm in the context of Scalable vector graphics

Scalable Vector Graphics (SVG) is an XML-based vector graphics format for defining two-dimensional graphics, having support for interactivity and animation. The SVG specification is an open standard developed by the World Wide Web Consortium since 1999.

SVG images are defined in a vector graphics format and stored in XML text files. SVG images can thus be scaled in size without loss of quality, and SVG files can be searched, indexed, scripted, and compressed. The XML text files can be created and edited with text editors or vector graphics editors, and are rendered by most web browsers. SVG can include JavaScript, potentially leading to cross-site scripting.

View the full Wikipedia page for Scalable vector graphics
↑ Return to Menu

Search algorithm in the context of Davis–Putnam–Logemann–Loveland algorithm

In logic and computer science, the Davis–Putnam–Logemann–Loveland (DPLL) algorithm is a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic formulae in conjunctive normal form, i.e. for solving the CNF-SAT problem.

It was introduced in 1961 by Martin Davis, George Logemann and Donald W. Loveland and is a refinement of the earlier Davis–Putnam algorithm, which is a resolution-based procedure developed by Davis and Hilary Putnam in 1960. Especially in older publications, the Davis–Logemann–Loveland algorithm is often referred to as the "Davis–Putnam method" or the "DP algorithm". Other common names that maintain the distinction are DLL and DPLL.

View the full Wikipedia page for Davis–Putnam–Logemann–Loveland algorithm
↑ Return to Menu

Search algorithm in the context of Sorting algorithm

In computer science, a sorting algorithm is an algorithm that puts elements of a list into an order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. Efficient sorting is important for optimizing the efficiency of other algorithms (such as search and merge algorithms) that require input data to be in sorted lists. Sorting is also often useful for canonicalizing data and for producing human-readable output.

Formally, the output of any sorting algorithm must satisfy two conditions:

View the full Wikipedia page for Sorting algorithm
↑ Return to Menu

Search algorithm in the context of Multi-agent systems

A multi-agent system (MAS or "self-organized system") is a computerized system composed of multiple interacting intelligent agents. Multi-agent systems can solve problems that are difficult or impossible for an individual agent or a monolithic system to solve. Intelligence may include methodic, functional, procedural approaches, algorithmic search or reinforcement learning. With advancements in large language models (LLMs), LLM-based multi-agent systems have emerged as a new area of research, enabling more sophisticated interactions and coordination among agents.

Despite considerable overlap, a multi-agent system is not always the same as an agent-based model (ABM). The goal of an ABM is to search for explanatory insight into the collective behavior of agents (which do not necessarily need to be "intelligent") obeying simple rules, typically in natural systems, rather than in solving specific practical or engineering problems. The terminology of ABM tends to be used more often in the science, and MAS in engineering and technology. Applications where multi-agent systems research may deliver an appropriate approach include online trading, disaster response, target surveillance and social structure modelling.

View the full Wikipedia page for Multi-agent systems
↑ Return to Menu

Search algorithm in the context of Metaheuristics

In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity. Metaheuristics sample a subset of solutions which is otherwise too large to be completely enumerated or otherwise explored. Metaheuristics may make relatively few assumptions about the optimization problem being solved and so may be usable for a variety of problems. Their use is always of interest when exact or other (approximate) methods are not available or are not expedient, either because the calculation time is too long or because, for example, the solution provided is too imprecise.

Compared to optimization algorithms and iterative methods, metaheuristics do not guarantee that a globally optimal solution can be found on some class of problems. Many metaheuristics implement some form of stochastic optimization, so that the solution found is dependent on the set of random variables generated. In combinatorial optimization, there are many problems that belong to the class of NP-complete problems and thus can no longer be solved exactly in an acceptable time from a relatively low degree of complexity. Metaheuristics then often provide good solutions with less computational effort than approximation methods, iterative methods, or simple heuristics. This also applies in the field of continuous or mixed-integer optimization. As such, metaheuristics are useful approaches for optimization problems. Several books and survey papers have been published on the subject. Literature review on metaheuristic optimization, suggested that it was Fred Glover who coined the word metaheuristics.

View the full Wikipedia page for Metaheuristics
↑ Return to Menu

Search algorithm in the context of Answer set programming

Answer set programming (ASP) is a form of declarative programming oriented towards difficult (primarily NP-hard) search problems. It is based on the stable model (answer set) semantics of logic programming. In ASP, search problems are reduced to computing stable models, and answer set solvers—programs for generating stable models—are used to perform search. The computational process employed in the design of many answer set solvers is an enhancement of the DPLL algorithm and, in principle, it always terminates (unlike Prolog query evaluation, which may lead to an infinite loop).

In a more general sense, ASP includes all applications of answer sets to knowledge representation and reasoning and the use of Prolog-style query evaluation for solving problems arising in these applications.

View the full Wikipedia page for Answer set programming
↑ Return to Menu

Search algorithm in the context of Genetic algorithm

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems via biologically inspired operators such as selection, crossover, and mutation. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, and causal inference.

View the full Wikipedia page for Genetic algorithm
↑ Return to Menu

Search algorithm in the context of Binary search algorithm

In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search algorithm that finds the position of a target value within a sorted array. Binary search compares the target value to the middle element of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found. If the search ends with the remaining half being empty, the target is not in the array.

Binary search runs in logarithmic time in the worst case, making comparisons, where is the number of elements in the array. Binary search is faster than linear search except for small arrays. However, the array must be sorted first to be able to apply binary search. There are specialized data structures designed for fast searching, such as hash tables, that can be searched more efficiently than binary search. However, binary search can be used to solve a wider range of problems, such as finding the next-smallest or next-largest element in the array relative to the target even if it is absent from the array.

View the full Wikipedia page for Binary search algorithm
↑ Return to Menu

Search algorithm in the context of Linear search

In computer science, linear search or sequential search is a method for finding an element within a list. It sequentially checks each element of the list until a match is found or the whole list has been searched.

A linear search runs in linear time in the worst case, and makes at most n comparisons, where n is the length of the list. If each element is equally likely to be searched, then linear search has an average case of n+1/2 comparisons, but the average case can be affected if the search probabilities for each element vary. Linear search is rarely practical because other search algorithms and schemes, such as the binary search algorithm and hash tables, allow significantly faster searching for all but short lists.

View the full Wikipedia page for Linear search
↑ Return to Menu