Feasible region in the context of Search algorithm


Feasible region in the context of Search algorithm

Feasible region Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Feasible region in the context of "Search algorithm"


⭐ Core Definition: Feasible region

In mathematical optimization and computer science, a feasible region, feasible set, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.

For example, consider the problem of minimizing the function with respect to the variables and subject to and Here the feasible set is the set of pairs (x, y) in which the value of x is at least 1 and at most 10 and the value of y is at least 5 and at most 12. The feasible set of the problem is separate from the objective function, which states the criterion to be optimized and which in the above example is

↓ Menu
HINT:

👉 Feasible region in the context of Search algorithm

In computer science, a search algorithm is an algorithm designed to solve a search problem. Search algorithms work to retrieve information stored within particular data structure, or calculated in the search space of a problem domain, with either discrete or continuous values.

Although search engines use search algorithms, they belong to the study of information retrieval, not algorithmics.

↓ Explore More Topics
In this Dossier

Feasible region in the context of Inequality (mathematics)

In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. The main types of inequality are less than and greater than (denoted by < and >, respectively the less-than and greater-than signs).

View the full Wikipedia page for Inequality (mathematics)
↑ Return to Menu

Feasible region in the context of Linear programming

Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).

More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope, which is a set defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its objective function is a real-valued affine (linear) function defined on this polytope. A linear programming algorithm finds a point in the polytope where this function has the largest (or smallest) value if such a point exists.

View the full Wikipedia page for Linear programming
↑ Return to Menu