Sea sponge in the context of "Sponge reef"

Play Trivia Questions online!

or

Skip to study material about Sea sponge in the context of "Sponge reef"

Ad spacer

⭐ Core Definition: Sea sponge

Sponges or sea sponges are primarily marine invertebrates of the animal phylum Porifera (/pəˈrɪfərəˌ pɔː-/; meaning 'pore bearer'), a basal clade and a sister taxon of the diploblasts. They are sessile filter feeders that are bound to the seabed, and are one of the most ancient members of macrobenthos, with many historical species being important reef-building organisms.

Sponges are multicellular organisms consisting of jelly-like mesohyl sandwiched between two thin layers of cells, and usually have tube-like bodies full of pores and channels that allow water to circulate through them. They have unspecialized cells that can transform into other types and that often migrate between the main cell layers and the mesohyl in the process. They do not have complex nervous, digestive or circulatory systems. Instead, most rely on maintaining a constant water flow through their bodies to obtain food and oxygen and to remove wastes, usually via flagella movements of the so-called "collar cells".

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Sea sponge in the context of Sponge reef

Sponge reefs are reefs produced by sea sponges. All modern sponge reefs are formed by hexactinellid sponges, which have an endoskeleton made of silica spicules and are often referred to as "glass sponges", while historically the non-spiculed, calcite-skeletoned archaeocyathid and stromatoporoid sponges were the primary reef-builders.

Sponge reefs were once a dominant landscape in the Paleozoic and Mesozoic sea, but are now very rare, and found only in waters off the coast of North America's Pacific Northwest region, more specifically southern Alaska, British Columbia and Washington. Sponge reefs were reported in 2018 within the strait of Georgia and Howe sound close to Vancouver. Although still common in the late Jurassic period, reef-building sponges were believed to have gone extinct during or shortly after the Cretaceous period, until the existing reefs were discovered in Queen Charlotte sound in 1987–1988 – hence these sometimes being dubbed living fossils.

↓ Explore More Topics
In this Dossier

Sea sponge in the context of Choanocyte

Choanocytes (also known as "collar cells") are cells that line the interior of asconoid, syconoid and leuconoid body types of sponges that contain a central flagellum, or cilium, surrounded by a collar of microvilli which are connected by a thin membrane.

They make up the choanoderm, a type of cell layer found in sponges. The cell has the closest resemblance to the choanoflagellates which are the closest related single celled protists to the animal kingdom (metazoans). The flagellae beat regularly, creating a water flow across the microvilli which can then filter nutrients from the water taken from the collar of the sponge. Food particles are then phagocytosed by the cell.

↑ Return to Menu

Sea sponge in the context of Market stall

A market stall or market booth, is a structure used by merchants to display and house their merchandise in a street market, fairs and conventions. Some commercial marketplaces, including market squares or flea markets, may permit more permanent stalls. Stalls are also used throughout the world by vendors selling street food.

There are many types of stalls, including carts designed to be pulled by hand or cycles; makeshift structures like tents, or converted tow-caravans and motor vehicles.

↑ Return to Menu

Sea sponge in the context of Mineralized tissues

Mineralized tissues are biological tissues that incorporate minerals into soft matrices. Typically these tissues form a protective shield or structural support. Bone, mollusc shells, deep sea sponge Euplectella species, radiolarians, diatoms, antler bone, tendon, cartilage, tooth enamel and dentin are some examples of mineralized tissues.

These tissues have been finely tuned to enhance their mechanical capabilities over millions of years of evolution. Thus, mineralized tissues have been the subject of many studies since there is a lot to learn from nature as seen from the growing field of biomimetics. The remarkable structural organization and engineering properties makes these tissues desirable candidates for duplication by artificial means. Mineralized tissues inspire miniaturization, adaptability and multifunctionality. While natural materials are made up of a limited number of components, a larger variety of material chemistries can be used to simulate the same properties in engineering applications. However, the success of biomimetics lies in fully grasping the performance and mechanics of these biological hard tissues before swapping the natural components with artificial materials for engineering design.

↑ Return to Menu

Sea sponge in the context of Bioerosion

Bioerosion describes the breakdown of hard ocean substrates – and less often terrestrial substrates – by living organisms. Marine bioerosion can be caused by mollusks, polychaete worms, phoronids, sponges, crustaceans, echinoids, and fish; it can occur on coastlines, on coral reefs, and on ships; its mechanisms include biotic boring, drilling, rasping, and scraping. On dry land, bioerosion is typically performed by pioneer plants or plant-like organisms such as lichen, and mostly chemical (e.g. by acidic secretions on limestone) or mechanical (e.g. by roots growing into cracks) in nature.

Bioerosion of coral reefs generates the fine and white coral sand characteristic of tropical islands. The coral is converted to sand by internal bioeroders such as algae, fungi, bacteria (microborers) and sponges (Clionaidae), bivalves (including Lithophaga), sipunculans, polychaetes, acrothoracican barnacles and phoronids, generating extremely fine sediment with diameters of 10 to 100 micrometres. External bioeroders include sea urchins (such as Diadema) and chitons. These forces in concert produce a great deal of erosion. Sea urchin erosion of calcium carbonate has been reported in some reefs at annual rates exceeding 20 kg/m.

↑ Return to Menu

Sea sponge in the context of Osculum

The osculum (pl.: oscula) is an excretory structure in the living sponge, a large opening to the outside through which the current of water exits after passing through the spongocoel. Wastes diffuse into the water and the water is pumped through the osculum carrying away with it the sponge's wastes. Sponges pump large volumes of water: typically a volume of water equal to the sponge's body size is pumped every five seconds.The size of the osculum is regulated by contractile myocytes. Its size, in turn, is one of the factors which determines the amount of water flowing through the sponge. It can be closed completely in response to excess silt in the water.

↑ Return to Menu

Sea sponge in the context of Sponge spicule

Spicules are structural elements found in most sponges. The meshing of many spicules serves as the sponge's skeleton and thus it provides structural support and potentially defense against predators.

Sponge spicules are made of calcium carbonate or silica. Large spicules visible to the naked eye are referred to as megascleres or macroscleres, while smaller, microscopic ones are termed microscleres. The composition, size, and shape of spicules are major characters in sponge systematics and taxonomy.

↑ Return to Menu