Texture (geology) in the context of "Rhyolite"

⭐ In the context of Rhyolite, what does a porphyritic texture indicate about the rock's formation?

Ad spacer

⭐ Core Definition: Texture (geology)

In geology, texture or rock microstructure refers to the relationship between the materials of which a rock is composed. The broadest textural classes are crystalline (in which the components are intergrown and interlocking crystals), fragmental (in which there is an accumulation of fragments by some physical process), aphanitic (in which crystals are not visible to the unaided eye), and glassy (in which the particles are too small to be seen and amorphously arranged). The geometric aspects and relations amongst the component particles or crystals are referred to as the crystallographic texture or preferred orientation. Textures can be quantified in many ways. A common parameter is the crystal size distribution. This creates the physical appearance or character of a rock, such as grain size, shape, arrangement, and other properties, at both the visible and microscopic scale.

Textures are penetrative fabrics of rocks; they occur throughout the entirety of the rock mass on microscopic, hand-sized specimen, and often outcrop scales. This is similar in many ways to foliations, except a texture does not necessarily carry structural information in terms of deformation events and orientation information. Structures occur on a hand-sized specimen scale and above.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Texture (geology) in the context of Rhyolite

Rhyolite (/ˈr.əlt/ RY-ə-lyte) is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals (phenocrysts) in an otherwise fine-grained groundmass. The mineral assemblage is predominantly quartz, sanidine, and plagioclase. It is the extrusive equivalent of granite.

Its high silica content makes rhyolitic magma extremely viscous. This favors explosive eruptions over effusive eruptions, so this type of magma is more often erupted as pyroclastic rock than as lava flows. Rhyolitic ash-flow tuffs are among the most voluminous of continental igneous rock formations.

↓ Explore More Topics
In this Dossier

Texture (geology) in the context of Aphanitic

Aphanites (adj. aphanitic; from Ancient Greek αφανης (aphanḗs) 'invisible') are igneous rocks that are so fine-grained that their component mineral crystals are not visible to the naked eye (in contrast to phanerites, in which the crystals are visible to the unaided eye). This geological texture results from rapid cooling in volcanic or hypabyssal (shallow subsurface) environments. As a rule, the texture of these rocks is not the same as that of volcanic glass (e.g., obsidian), with volcanic glass being non-crystalline (amorphous), and having a glass-like appearance.

Aphanites are commonly porphyritic, having large crystals embedded in the fine groundmass, or matrix. The larger inclusions are called phenocrysts. They consist essentially of very small crystals of minerals such as plagioclase feldspar, with hornblende or augite, and may contain also biotite, quartz, and orthoclase.

↑ Return to Menu

Texture (geology) in the context of Dimension stone

Dimension stone is natural stone or rock that has been selected and finished (e.g., trimmed, cut, drilled or ground) to specific sizes or shapes. Color, texture and pattern, and surface finish of the stone are also normal requirements. Another important selection criterion is durability: the time measure of the ability of dimension stone to endure and to maintain its essential and distinctive characteristics of strength, resistance to decay, and appearance.

Quarries that produce dimension stone or crushed stone (used as construction aggregate) are interconvertible. Since most quarries can produce either one, a crushed stone quarry can be converted to dimension stone production. However, first the stone shattered by heavy and indiscriminate blasting must be removed. Dimension stone is separated by more precise and delicate techniques, such as diamond wire saws, diamond belt saws, burners (jet-piercers), or light and selective blasting with detonating cord, a weak explosive.

↑ Return to Menu

Texture (geology) in the context of Lithographic limestone

Lithographic limestone is hard limestone that is sufficiently fine-grained, homogeneous and defect-free to be used for lithography.

Geologists use the term "lithographic texture" to refer to a grain size under 1/250 mm.

↑ Return to Menu

Texture (geology) in the context of Schist

Schist (/ˈʃɪst/ SHIST) is a medium-grained metamorphic rock generally derived from fine-grained sedimentary rock, like shale. It shows pronounced schistosity (named for the rock). This means that the rock is composed of mineral grains easily seen with a low-power hand lens, oriented in such a way that the rock is easily split into thin flakes or plates. This texture reflects a high content of platy minerals, such as mica, talc, chlorite, or graphite. These are often interleaved with more granular minerals, such as feldspar or quartz.

Schist typically forms during regional metamorphism accompanying the process of mountain building (orogeny) and usually reflects a medium grade of metamorphism. Schist can form from many different kinds of rocks, including sedimentary rocks such as mudstones and igneous rocks such as tuffs. Schist metamorphosed from mudstone is particularly common and is often very rich in mica (a mica schist). Where the type of the original rock (the protolith) is discernible, the schist is usually given a name reflecting its protolith, such as schistose metasandstone. Otherwise, the names of the constituent minerals will be included in the rock name, such as quartz-felspar-biotite schist.

↑ Return to Menu

Texture (geology) in the context of Matrix (geology)

The matrix or groundmass of a rock is the finer-grained mass of material in which larger grains, crystals, or clasts are embedded.

The matrix of an igneous rock consists of finer-grained, often microscopic, crystals in which larger crystals, called phenocrysts, are embedded. This porphyritic texture is indicative of multi-stage cooling of magma. For example, porphyritic andesite will have large phenocrysts of plagioclase in a fine-grained matrix. Also in South Africa, diamonds are often mined from a matrix of weathered clay-like rock (kimberlite) called "yellow ground".

↑ Return to Menu

Texture (geology) in the context of Phanerite

A phanerite is an igneous rock whose microstructure is made up of crystals large enough to be distinguished with the unaided human eye. In contrast, the crystals in an aphanitic rock are too fine-grained to be identifiable. Phaneritic texture forms when magma deep underground in the plutonic environment cools slowly, giving the crystals time to grow.

Phanerites are often described as coarse-grained or macroscopically crystalline.

↑ Return to Menu