Scheme (programming language) in the context of Continuation


Scheme (programming language) in the context of Continuation

Scheme (programming language) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Scheme (programming language) in the context of "Continuation"


⭐ Core Definition: Scheme (programming language)

Scheme is a dialect of the Lisp family of programming languages. Scheme was created during the 1970s at the MIT Computer Science and Artificial Intelligence Laboratory (MIT CSAIL) and released by its developers, Guy L. Steele and Gerald Jay Sussman, via a series of memos now known as the Lambda Papers. It was the first dialect of Lisp to choose lexical scope and the first to require implementations to perform tail-call optimization, giving stronger support for functional programming and associated techniques such as recursive algorithms. It was also one of the first programming languages to support first-class continuations. It had a significant influence on the effort that led to the development of Common Lisp.

The Scheme language is standardized in the official Institute of Electrical and Electronics Engineers (IEEE) standard and a de facto standard called the Revised Report on the Algorithmic Language Scheme (RnRS). A widely implemented standard is R5RS (1998). The most recently ratified standard of Scheme is "R7RS-small" (2013). The more expansive and modular R6RS was ratified in 2007. Both trace their descent from R5RS; the timeline below reflects the chronological order of ratification.

↓ Menu
HINT:

In this Dossier

Scheme (programming language) in the context of Programming language theory

Programming language theory (PLT) is a branch of computer science that deals with the design, implementation, analysis, characterization, and classification of formal languages known as programming languages. Programming language theory is closely related to other fields including linguistics, mathematics, and software engineering.

View the full Wikipedia page for Programming language theory
↑ Return to Menu

Scheme (programming language) in the context of Lambda Papers

The history of the programming language Scheme begins with the development of earlier members of the Lisp family of languages during the second half of the twentieth century. During the design and development period of Scheme, language designers Guy L. Steele and Gerald Jay Sussman released an influential series of Massachusetts Institute of Technology (MIT) AI Memos known as the Lambda Papers (1975–1980). This resulted in the growth of popularity in the language and the era of standardization from 1990 onward. Much of the history of Scheme has been documented by the developers themselves.

View the full Wikipedia page for Lambda Papers
↑ Return to Menu

Scheme (programming language) in the context of Bootstrap compiler

In computer science, bootstrapping is the technique for producing a self-compiling compiler – that is, a compiler (or assembler) written in the source programming language that it intends to compile. An initial core version of the compiler (the bootstrap compiler) is generated in a different language (which could be assembly language); successive expanded versions of the compiler are developed using this minimal subset of the language. The problem of compiling a self-compiling compiler has been called the chicken-or-egg problem in compiler design, and bootstrapping is a solution to this problem.

Bootstrapping is a fairly common practice when creating a programming language. Many compilers for many programming languages are bootstrapped, including compilers for ALGOL, BASIC, C, Common Lisp, D, Eiffel, Elixir, Factor, Go, Haskell, Java, Modula-2, Nim, Oberon, OCaml, Pascal, PL/I, Python, Rust, Scala, Scheme, TypeScript, Vala, Zig and more.

View the full Wikipedia page for Bootstrap compiler
↑ Return to Menu

Scheme (programming language) in the context of Lisp programming language

Lisp (historically LISP, an abbreviation of "list processing") is a family of programming languages with a long history and a distinctive, fully parenthesized prefix notation.Originally specified in the late 1950s, it is the second-oldest high-level programming language still in common use, after Fortran. Lisp has changed since its early days, and many dialects have existed over its history. Today, the best-known general-purpose Lisp dialects are Common Lisp, Scheme, Racket, and Clojure.

Lisp was originally created as a practical mathematical notation for computer programs, influenced by (though not originally derived from) the notation of Alonzo Church's lambda calculus. It quickly became a favored programming language for artificial intelligence (AI) research. As one of the earliest programming languages, Lisp pioneered many ideas in computer science, including tree data structures, automatic storage management, dynamic typing, conditionals, higher-order functions, recursion, the self-hosting compiler, and the read–eval–print loop.

View the full Wikipedia page for Lisp programming language
↑ Return to Menu

Scheme (programming language) in the context of Side effect (computer science)

In computer science, an operation or expression is said to have a side effect if it has any observable effect other than its primary effect of reading the value of its arguments and returning a value to the invoker of the operation. Example side effects include modifying a non-local variable, a static local variable or a mutable argument passed by reference; performing I/O; or calling other functions with side-effects. In the presence of side effects, a program's behaviour may depend on history; that is, the order of evaluation matters. Understanding and debugging a function with side effects requires knowledge about the context and its possible histories.Side effects play an important role in the design and analysis of programming languages. The degree to which side effects are used depends on the programming paradigm. For example, imperative programming is commonly used to produce side effects, to update a system's state. By contrast, declarative programming is commonly used to report on the state of system, without side effects.

Functional programming aims to minimize or eliminate side effects. The lack of side effects makes it easier to do formal verification of a program. The functional language Haskell eliminates side effects such as I/O and other stateful computations by replacing them with monadic actions. Functional languages such as Standard ML, Scheme and Scala do not restrict side effects, but it is customary for programmers to avoid them.

View the full Wikipedia page for Side effect (computer science)
↑ Return to Menu

Scheme (programming language) in the context of Metalinguistic abstraction

In computer science, metalinguistic abstraction is the process of solving complex problems by creating a new language or vocabulary to better understand the problem space. More generally, it also encompasses the ability or skill of a programmer to think outside of the pre-conceived notions of a specific language in order to exploratorily investigate a problem space in search of the kind of solutions which are most natural or cognitively ergonomic to it. It is a recurring theme in the seminal MIT textbook Structure and Interpretation of Computer Programs, which uses Scheme, a dialect of Lisp, as a framework for constructing new languages.

View the full Wikipedia page for Metalinguistic abstraction
↑ Return to Menu

Scheme (programming language) in the context of Eclipse (software)

Eclipse is an integrated development environment (IDE) used in computer programming. It contains a base workspace and an extensible plug-in system for customizing the environment. It had been the most popular IDE for Java development until 2016, when it was surpassed by IntelliJ IDEA. Eclipse is written mostly in Java and its primary use is for developing Java applications, but it may also be used to develop applications in other programming languages via plug-ins, including Ada, ABAP, C, C++, C#, Clojure, COBOL, D, Erlang, Fortran, Groovy, Haskell, HLASM, JavaScript, Julia, Lasso, Lua, NATURAL, Perl, PHP, PL/I, Prolog, Python, R, Rexx, Ruby (including the Ruby on Rails framework), Rust, Scala, and Scheme. It can also be used to develop documents with LaTeX (via a TeXlipse plug-in) and packages for the software Mathematica. Development environments include the Eclipse Java development tools (JDT) for Java and Scala, Eclipse CDT for C/C++, and Eclipse PDT for PHP, among others.

The initial codebase originated from IBM VisualAge. The Eclipse software development kit (SDK), which includes the Java development tools, is meant for Java developers. Users can extend its abilities by installing plug-ins written for the Eclipse Platform, such as development toolkits for other programming languages, and can write and contribute their own plug-ins. Since Eclipse 3.0 (released in 2004), plug-ins are installed and managed as "bundles" using Equinox, an implementation of OSGi.

View the full Wikipedia page for Eclipse (software)
↑ Return to Menu