Salivary glands in the context of Mucous gland


Salivary glands in the context of Mucous gland

⭐ Core Definition: Salivary glands

The salivary glands in many vertebrates including mammals are exocrine glands that produce saliva through a system of ducts. Humans have three paired major salivary glands (parotid, submandibular, and sublingual), as well as hundreds of minor salivary glands. Salivary glands can be classified as serous, mucous, or seromucous (mixed).

In serous secretions, the main type of protein secreted is alpha-amylase, an enzyme that breaks down starch into maltose and glucose, whereas in mucous secretions, the main protein secreted is mucin, which acts as a lubricant.

↓ Menu
HINT:

In this Dossier

Salivary glands in the context of Digestion

Digestion is the breakdown of large insoluble food compounds into small water-soluble components so that they can be absorbed into the blood plasma. In certain organisms, these smaller substances are absorbed through the small intestine into the blood stream. Digestion is a form of catabolism that is often divided into two processes based on how food is broken down: mechanical and chemical digestion. The term mechanical digestion refers to the physical breakdown of large pieces of food into smaller pieces which can subsequently be accessed by digestive enzymes. Mechanical digestion takes place in the mouth through mastication and in the small intestine through segmentation contractions. In chemical digestion, enzymes break down food into the small compounds that the body can use.

In the human digestive system, food enters the mouth and mechanical digestion of the food starts by the action of mastication (chewing), a form of mechanical digestion, and the wetting contact of saliva. Saliva, a liquid secreted by the salivary glands, contains salivary amylase, an enzyme which starts the digestion of starch in the food. The saliva also contains mucus, which lubricates the food; the electrolyte hydrogencarbonate (HCO3), which provides the ideal conditions of pH for amylase to work; and other electrolytes (Na, K, Cl). About 30% of starch is hydrolyzed into disaccharide in the oral cavity (mouth). After undergoing mastication and starch digestion, the food will be in the form of a small, round slurry mass called a bolus. It will then travel down the esophagus and into the stomach by the action of peristalsis. Gastric juice in the stomach starts protein digestion. Gastric juice mainly contains hydrochloric acid and pepsin. In infants and toddlers, gastric juice also contains rennin to digest milk proteins. As the first two chemicals may damage the stomach wall, mucus and bicarbonates are secreted by the stomach. They provide a slimy layer that acts as a shield against the damaging effects of chemicals like concentrated hydrochloric acid while also aiding lubrication. Hydrochloric acid provides acidic pH for pepsin. At the same time protein digestion is occurring, mechanical mixing occurs by peristalsis, which is waves of muscular contractions that move along the stomach wall. This allows the mass of food to further mix with the digestive enzymes. Pepsin breaks down proteins into peptides or proteoses, which are further broken down into dipeptides and amino acids by enzymes in the small intestine. Studies suggest that increasing the number of chews per bite increases relevant gut hormones and may decrease self-reported hunger and food intake.

View the full Wikipedia page for Digestion
↑ Return to Menu

Salivary glands in the context of Heterocrine gland

Heterocrine glands (or composite glands) are the glands which function as both exocrine gland and endocrine gland. These glands exhibit a unique and diverse secretory function encompassing the release of proteins and non-proteinaceous compounds, endocrine and exocrine secretions into both the bloodstream and ducts respectively. This duality allows them to serve crucial roles in regulating various physiological processes and maintaining homeostasis. These include the gonads (testicles and ovaries), pancreas and salivary glands.

Pancreas releases digestive enzymes into the small intestine via ducts (exocrine) and secretes insulin and glucagon into the bloodstream (endocrine) to regulate blood sugar level. Testes produce sperm, which is released through ducts (exocrine), and they also secrete androgens into the bloodstream (endocrine). Similarly, ovaries release ova through ducts (exocrine) and produce estrogen and progesterone (endocrine). Salivary glands secrete saliva through ducts to aid in digestion (exocrine) and produce epidermal growth factor and insulin-like growth factor (endocrine).

View the full Wikipedia page for Heterocrine gland
↑ Return to Menu

Salivary glands in the context of Subesophageal ganglion

The suboesophageal ganglion (acronym: SOG; synonym: subesophageal ganglion) of arthropods and in particular insects is part of the arthropod central nervous system (CNS). As indicated by its name, it is located below the oesophagus, inside the head. As part of the ventral nerve cord, it is connected (via pairs of connections) to the brain (or supraoesophageal ganglion) and to the first thoracic ganglion (or protothoracic ganglion). Its nerves innervate the sensory organs and muscles of the mouthparts and the salivary glands. Neurons in the suboesophageal ganglion control movement of the head and neck as well.

It is composed of three pairs of fused ganglia, each of which is associated with a pair of mouthparts. Therefore, the fused parts are called the mandibular, maxillary and labial ganglia.

View the full Wikipedia page for Subesophageal ganglion
↑ Return to Menu