Glucagon in the context of "Heterocrine gland"

Play Trivia Questions online!

or

Skip to study material about Glucagon in the context of "Heterocrine gland"

Ad spacer

⭐ Core Definition: Glucagon

Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It raises the concentration of glucose and fatty acids in the bloodstream and is considered to be the main catabolic hormone of the body. It is also used as a medication to treat a number of health conditions. Its effect is opposite to that of insulin, which lowers extracellular glucose. It is produced from proglucagon, encoded by the GCG gene.

The pancreas releases glucagon when the amount of glucose in the bloodstream is too low. Glucagon causes the liver to engage in glycogenolysis: converting stored glycogen into glucose, which is released into the bloodstream. High blood-glucose levels, on the other hand, stimulate the release of insulin. Insulin allows glucose to be taken up and used by insulin-dependent tissues. Thus, glucagon and insulin are part of a feedback system that keeps blood glucose levels stable. Glucagon increases energy expenditure and is elevated under conditions of stress. Glucagon belongs to the secretin family of hormones.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Glucagon in the context of Heterocrine gland

Heterocrine glands (or composite glands) are the glands which function as both exocrine gland and endocrine gland. These glands exhibit a unique and diverse secretory function encompassing the release of proteins and non-proteinaceous compounds, endocrine and exocrine secretions into both the bloodstream and ducts respectively. This duality allows them to serve crucial roles in regulating various physiological processes and maintaining homeostasis. These include the gonads (testicles and ovaries), pancreas and salivary glands.

Pancreas releases digestive enzymes into the small intestine via ducts (exocrine) and secretes insulin and glucagon into the bloodstream (endocrine) to regulate blood sugar level. Testes produce sperm, which is released through ducts (exocrine), and they also secrete androgens into the bloodstream (endocrine). Similarly, ovaries release ova through ducts (exocrine) and produce estrogen and progesterone (endocrine). Salivary glands secrete saliva through ducts to aid in digestion (exocrine) and produce epidermal growth factor and insulin-like growth factor (endocrine).

↓ Explore More Topics
In this Dossier

Glucagon in the context of Pancreas

The pancreas (plural pancreases, or pancreata) is an organ of the digestive system and endocrine system of vertebrates. In humans, it is located in the abdomen behind the stomach and functions as a gland. The pancreas is a mixed or heterocrine gland, i.e., it has both an endocrine and a digestive exocrine function. Ninety-nine percent of the pancreas is exocrine and 1% is endocrine. As an endocrine gland, it functions mostly to regulate blood sugar levels, secreting the hormones insulin, glucagon, somatostatin and pancreatic polypeptide. As a part of the digestive system, it functions as an exocrine gland secreting pancreatic juice into the duodenum through the pancreatic duct. This juice contains bicarbonate, which neutralizes acid entering the duodenum from the stomach; and digestive enzymes, which break down carbohydrates, proteins and fats in food entering the duodenum from the stomach.

Inflammation of the pancreas is known as pancreatitis, with common causes including chronic alcohol use and gallstones. Because of its role in the regulation of blood sugar, the pancreas is also a key organ in diabetes. Pancreatic cancer can arise following chronic pancreatitis or due to other reasons, and carries a very poor prognosis, as it is often only identified after it has spread to other areas of the body.

↑ Return to Menu

Glucagon in the context of Insulin

Insulin (/ˈɪn.sjʊ.lɪn/ ; from Latin insula 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (INS) gene. It is the main anabolic hormone of the body. It regulates the metabolism of carbohydrates, fats, and protein by promoting the absorption of glucose from the blood into cells of the liver, fat, and skeletal muscles. In these tissues the absorbed glucose is converted into either glycogen, via glycogenesis, or fats (triglycerides), via lipogenesis; in the liver, glucose is converted into both. Glucose production and secretion by the liver are strongly inhibited by high concentrations of insulin in the blood. Circulating insulin also affects the synthesis of proteins in a wide variety of tissues. It is thus an anabolic hormone, promoting the conversion of small molecules in the blood into large molecules in the cells. Low insulin in the blood has the opposite effect, promoting widespread catabolism, especially of reserve body fat.

Beta cells are sensitive to blood sugar levels so that they secrete insulin into the blood in response to high level of glucose, and inhibit secretion of insulin when glucose levels are low. Insulin production is also regulated by glucose: high glucose promotes insulin production while low glucose levels lead to lower production. Insulin enhances glucose uptake and metabolism in the cells, thereby reducing blood sugar. Their neighboring alpha cells, by taking their cues from the beta cells, secrete glucagon into the blood in the opposite manner: increased secretion when blood glucose is low, and decreased secretion when glucose concentrations are high. Glucagon increases blood glucose by stimulating glycogenolysis and gluconeogenesis in the liver. The secretion of insulin and glucagon into the blood in response to the blood glucose concentration is the primary mechanism of glucose homeostasis.

↑ Return to Menu

Glucagon in the context of Blood sugar regulation

Blood sugar regulation is the process by which the levels of blood sugar, the common name for glucose dissolved in blood plasma, are maintained by the body within a narrow range.

This tight regulation is referred to as glucose homeostasis. Insulin, which lowers blood sugar, and glucagon, which raises it, are the most well known of the hormones involved, but more recent discoveries of other glucoregulatory hormones have expanded the understanding of this process. The gland called pancreas secretes two hormones and they are primarily responsible to regulate glucose levels in blood.

↑ Return to Menu

Glucagon in the context of Alpha cell

Alpha cells (α-cells) are endocrine cells that are found in the Islets of Langerhans in the pancreas. Alpha cells secrete the peptide hormone glucagon in order to increase glucose levels in the blood stream.

↑ Return to Menu