Insulin-like growth factor in the context of "Heterocrine gland"

Play Trivia Questions online!

or

Skip to study material about Insulin-like growth factor in the context of "Heterocrine gland"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Insulin-like growth factor in the context of Heterocrine gland

Heterocrine glands (or composite glands) are the glands which function as both exocrine gland and endocrine gland. These glands exhibit a unique and diverse secretory function encompassing the release of proteins and non-proteinaceous compounds, endocrine and exocrine secretions into both the bloodstream and ducts respectively. This duality allows them to serve crucial roles in regulating various physiological processes and maintaining homeostasis. These include the gonads (testicles and ovaries), pancreas and salivary glands.

Pancreas releases digestive enzymes into the small intestine via ducts (exocrine) and secretes insulin and glucagon into the bloodstream (endocrine) to regulate blood sugar level. Testes produce sperm, which is released through ducts (exocrine), and they also secrete androgens into the bloodstream (endocrine). Similarly, ovaries release ova through ducts (exocrine) and produce estrogen and progesterone (endocrine). Salivary glands secrete saliva through ducts to aid in digestion (exocrine) and produce epidermal growth factor and insulin-like growth factor (endocrine).

↓ Explore More Topics
In this Dossier

Insulin-like growth factor in the context of Ossification

Ossification (also called osteogenesis or bone mineralization) in bone remodeling is the process of laying down new bone material by cells named osteoblasts. It is synonymous with bone tissue formation. There are two processes resulting in the formation of normal, healthy bone tissue: Intramembranous ossification is the direct laying down of bone into the primitive connective tissue (mesenchyme), while endochondral ossification involves cartilage as a precursor.

In fracture healing, endochondral osteogenesis is the most commonly occurring process, for example in fractures of long bones treated by plaster of Paris, whereas fractures treated by open reduction and internal fixation with metal plates, screws, pins, rods and nails may heal by intramembranous osteogenesis.

↑ Return to Menu

Insulin-like growth factor in the context of Bone remodeling

In osteology, bone remodeling or bone metabolism is a lifelong process where mature bone tissue is removed from the skeleton (a process called bone resorption) and new bone tissue is formed (a process called ossification or new bone formation). Recent research has identified a specialised subset of blood vessels, termed Type R endothelial cells, in the bone microenvironment. These blood vessels play a crucial role in adult bone remodelling by mediating interactions between bone-resorbing osteoclasts and bone-forming osteoblasts. Type R blood vessels are characterised by their association with post-arterial capillaries and exhibit unique remodelling properties crucial for bone homeostasis. These processes also control the reshaping or replacement of bone following injuries like fractures but also micro-damage, which occurs during normal activity. Remodeling responds also to functional demands of the mechanical loading.

In the first year of life, almost 100% of the skeleton is replaced. In adults, remodeling proceeds at about 10% per year.

↑ Return to Menu