Rutherford model in the context of "Rutherford scattering"

Play Trivia Questions online!

or

Skip to study material about Rutherford model in the context of "Rutherford scattering"

Ad spacer

⭐ Core Definition: Rutherford model

The Rutherford model is a name for the concept that an atom contains a compact nucleus. The concept arose after Ernest Rutherford directed the Geiger–Marsden experiment in 1909, which showed much more alpha particle recoil than J. J. Thomson's plum pudding model of the atom could explain. Thomson's model had positive charge spread out in the atom. Rutherford's analysis proposed a high central charge concentrated into a very small volume in comparison to the rest of the atom and with this central volume containing most of the atom's mass. The central region would later be known as the atomic nucleus. Rutherford did not discuss the organization of electrons in the atom and did not himself propose a model for the atom. Niels Bohr joined Rutherford's lab and developed a theory for the electron motion which became known as the Bohr model.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Rutherford model in the context of Rutherford scattering

The Rutherford scattering experiments were a landmark series of experiments by which scientists learned that every atom has a nucleus where all of its positive charge and most of its mass is concentrated. They deduced this after measuring how an alpha particle beam is scattered when it strikes a thin metal foil. The experiments were performed between 1906 and 1913 by Hans Geiger and Ernest Marsden under the direction of Ernest Rutherford at the Physical Laboratories of the University of Manchester.

The physical phenomenon was explained by Rutherford in a classic 1911 paper that eventually led to the widespread use of scattering in particle physics to study subatomic matter. Rutherford scattering or Coulomb scattering is the elastic scattering of charged particles by the Coulomb interaction. The paper also initiated the development of the planetary Rutherford model of the atom and eventually the Bohr model.

↓ Explore More Topics
In this Dossier

Rutherford model in the context of Bohr model

In atomic physics, the Bohr model or Rutherford–Bohr model is an obsolete model of the atom that incorporated some early quantum concepts. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford's discover of the atom's nucleus, it supplanted the plum pudding model of J. J. Thomson only to be replaced by the quantum atomic model in the 1920s. It consists of a small, dense atomic nucleus surrounded by orbiting electrons. It is analogous to the structure of the Solar System, but with attraction provided by electrostatic force rather than gravity, and with the electron energies quantized (assuming only discrete values).

In the history of atomic physics, it followed, and ultimately replaced, several earlier models, including Joseph Larmor's Solar System model (1897), Jean Perrin's model (1901), the cubical model (1902), Hantaro Nagaoka's Saturnian model (1904), the plum pudding model (1904), Arthur Haas's quantum model (1910), the Rutherford model (1911), and John William Nicholson's nuclear quantum model (1912). The improvement over the 1911 Rutherford model mainly concerned the new quantum mechanical interpretation introduced by Haas and Nicholson, but forsaking any attempt to explain radiation according to classical physics.

↑ Return to Menu

Rutherford model in the context of Plum pudding model

The plum pudding model is an obsolete scientific model of the atom. It was first proposed by J. J. Thomson in 1904 following his discovery of the electron in 1897, and was rendered obsolete by Ernest Rutherford's discovery of the atomic nucleus in 1911. The model tried to account for two properties of atoms then known: that there are electrons, and that atoms have no net electric charge. Logically there had to be an equal amount of positive charge to balance out the negative charge of the electrons. As Thomson had no idea as to the source of this positive charge, he tentatively proposed that it was everywhere in the atom, and that the atom was spherical. This was the mathematically simplest hypothesis to fit the available evidence, or lack thereof. In such a sphere, the negatively charged electrons would distribute themselves in a more or less even manner throughout the volume, simultaneously repelling each other while being attracted to the positive sphere's center.

Despite Thomson's efforts, his model couldn't account for emission spectra and valencies. Based on experimental studies of alpha particle scattering (in the gold foil experiment), Ernest Rutherford developed an alternative model for the atom featuring a compact nucleus where the positive charge is concentrated.

↑ Return to Menu