Retrograde and prograde motion in the context of "Earth's orbit"

Play Trivia Questions online!

or

Skip to study material about Retrograde and prograde motion in the context of "Earth's orbit"

Ad spacer

⭐ Core Definition: Retrograde and prograde motion

Retrograde motion in astronomy is, in general, orbital or rotational motion of an object in the direction opposite the rotation of its primary, that is, the central object (right figure). It may also describe other motions such as precession or nutation of an object's rotational axis. Prograde or direct motion is more normal motion in the same direction as the primary rotates. However, "retrograde" and "prograde" can also refer to an object other than the primary if so described. The direction of rotation is determined by an inertial frame of reference, such as distant fixed stars.

In the Solar System, the orbits around the Sun of all planets and dwarf planets and most small Solar System bodies, except many comets and few distant objects, are prograde. They orbit around the Sun in the same direction as the sun rotates about its axis, which is counterclockwise when observed from above the Sun's north pole. Except for Venus and Uranus, planetary rotations around their axis are also prograde. Most natural satellites have prograde orbits around their planets. Prograde satellites of Uranus orbit in the direction Uranus rotates, which is retrograde to the Sun. Nearly all regular satellites are tidally locked and thus have prograde rotation. Retrograde satellites are generally small and distant from their planets, except Neptune's satellite Triton, which is large and close. All retrograde satellites are thought to have formed separately before being captured by their planets.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Retrograde and prograde motion in the context of Prime meridian

A prime meridian is an arbitrarily chosen meridian (a line of longitude) in a geographic coordinate system at which longitude is defined to be 0°. On a spheroid, a prime meridian and its anti-meridian (the 180th meridian in a 360°-system) form a great ellipse. This divides the body (e.g. Earth) into two hemispheres: the Eastern Hemisphere and the Western Hemisphere (for an east-west notational system). For Earth's prime meridian, various conventions have been used or advocated in different regions throughout history. Earth's current international standard prime meridian is the IERS Reference Meridian. It is derived, but differs slightly, from the Greenwich Meridian, the previous standard.

Longitudes for the Earth and Moon are measured from their prime meridian (at 0°) to 180° east and west. For all other Solar System bodies, longitude is measured from 0° (their prime meridian) to 360°. West longitudes are used if the rotation of the body is prograde (or 'direct', like Earth), meaning that its direction of rotation is the same as that of its orbit. East longitudes are used if the rotation is retrograde.

↑ Return to Menu

Retrograde and prograde motion in the context of Venus

Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" among the planets of the Solar System for its orbit being the closest to Earth's, both being rocky planets, and having the most similar and nearly equal size, mass, and surface gravity. Venus, though, is significantly different, especially as it has no liquid water, and its atmosphere is far thicker and denser than that of any other rocky body in the Solar System. The atmosphere is composed mostly of carbon dioxide and has a thick cloud layer of sulfuric acid that spans the whole planet. At the mean surface level, the atmosphere reaches a temperature of 737 K (464 °C; 867 °F) and a pressure 92 times greater than Earth's at sea level, turning the lowest layer of the atmosphere into a supercritical fluid. From Earth, Venus is visible as a star-like point of light, appearing brighter than any other natural point of light in the sky, and as an inferior planet always relatively close to the Sun, either as the brightest "morning star" or "evening star".

The orbits of Venus and Earth make the two planets approach each other in synodic periods of 1.6 years. In the course of this, Venus comes closer to Earth than any other planet, in contrast to Mercury which stays closer over the course of an orbit to Earth than any other planet, due to its orbit being closer to the Sun. In interplanetary spaceflight from Earth, Venus is frequently used as a waypoint for gravity assists, offering a faster and more economical route. Venus has no moons and a very slow retrograde rotation about its axis, a result of competing forces of solar tidal locking and differential heating of Venus's massive atmosphere. As a result, a Venusian day is 116.75 Earth days long, about half a Venusian solar year, which is 224.7 Earth days long.

↑ Return to Menu

Retrograde and prograde motion in the context of Uranus

Uranus is the seventh planet from the Sun. It is a gaseous cyan-coloured ice giant. Most of the planet is made of water, ammonia, and methane in a supercritical phase of matter, which astronomy calls "ice" or volatiles. The planet's atmosphere has a complex layered cloud structure and has the lowest minimum temperature (49 K (−224 °C; −371 °F)) of all the Solar System's planets. It has a marked axial tilt of 82.23° with a retrograde rotation period of 17 hours and 14 minutes. This means that in an 84-Earth-year orbital period around the Sun, its poles get around 42 years of continuous sunlight, followed by 42 years of continuous darkness.

Uranus has the third-largest diameter and fourth-largest mass among the Solar System's planets. Based on current models, inside its volatile mantle layer is a rocky core, and a thick hydrogen and helium atmosphere surrounds it. Trace amounts of hydrocarbons (thought to be produced via hydrolysis) and carbon monoxide along with carbon dioxide (thought to have originated from comets) have been detected in the upper atmosphere. There are many unexplained climate phenomena in Uranus's atmosphere, such as its peak wind speed of 900 km/h (560 mph), variations in its polar cap, and its erratic cloud formation. The planet also has very low internal heat compared to other giant planets, the cause of which remains unclear.

↑ Return to Menu

Retrograde and prograde motion in the context of Impact event

An impact event is a collision between astronomical objects causing measurable effects. Impact events have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or meteoroids and have minimal effect. When large objects impact terrestrial planets such as the Earth, there can be significant physical and biospheric consequences, as the impacting body is usually traveling at several kilometres per second (km/s), with a minimum impact speed of 11.2 km/s (25,054 mph; 40,320 km/h) for bodies striking Earth. While planetary atmospheres can mitigate some of these impacts through the effects of atmospheric entry, many large bodies retain sufficient energy to reach the surface and cause substantial damage. This results in the formation of impact craters and structures, shaping the dominant landforms found across various types of solid objects found in the Solar System. Their prevalence and ubiquity present the strongest empirical evidence of the frequency and scale of these events.

Impact events appear to have played a significant role in the evolution of the Solar System since its formation. Major impact events have significantly shaped Earth's history, and have been implicated in the formation of the Earth–Moon system. Interplanetary impacts have also been proposed to explain the retrograde rotation of Uranus and Venus. Impact events also appear to have played a significant role in the evolutionary history of life. Impacts may have helped deliver the building blocks for life (the panspermia theory relies on this premise). Impacts have been suggested as the origin of water on Earth. They have also been implicated in several mass extinctions. The prehistoric Chicxulub impact, 66 million years ago, is believed to be the cause not only of the Cretaceous–Paleogene extinction event but acceleration of the evolution of mammals, leading to their dominance and, in turn, setting in place conditions for the eventual rise of humans.

↑ Return to Menu

Retrograde and prograde motion in the context of Orbit of the Moon

The Moon orbits Earth in the prograde direction and completes one revolution relative to the Vernal Equinox and the fixed stars in about 27.3 days (a tropical month and a sidereal month), and one revolution relative to the Sun in about 29.5 days (a synodic month).

On average, the distance to the Moon is about 384,400 km (238,900 mi) from Earth's centre, which corresponds to about 60 Earth radii or 1.28 light-seconds.

↑ Return to Menu

Retrograde and prograde motion in the context of Orbital pole

An orbital pole is either point at the ends of the orbital normal, an imaginary line segment that runs through a focus of an orbit (of a revolving body like a planet, moon or satellite) and is perpendicular (or normal) to the orbital plane. Projected onto the celestial sphere, orbital poles are similar in concept to celestial poles, but are based on the body's orbit instead of its equator.

The north orbital pole of a revolving body is defined by the right-hand rule. If the fingers of the right hand are curved along the direction of orbital motion, with the thumb extended and oriented to be parallel to the orbital axis, then the direction the thumb points is defined to be the orbital north.

↑ Return to Menu

Retrograde and prograde motion in the context of Centaur (minor planet)

In planetary astronomy, a centaur is a small Solar System body that orbits the Sun between Jupiter and Neptune and crosses the orbits of one or more of the giant planets. Centaurs generally have unstable orbits because of this; almost all their orbits have dynamic lifetimes of only a few million years, but there is one known centaur, 514107 Kaʻepaokaʻāwela, which may be in a stable (though retrograde) orbit. Centaurs typically exhibit the characteristics of both asteroids and comets. They are named after the mythological centaurs that were a mixture of horse and human. Observational bias toward large objects makes determination of the total centaur population difficult. Estimates for the number of centaurs in the Solar System more than 1 km in diameter range from as low as 44,000 to more than 10,000,000.

The first centaur to be discovered, under the definition of the Jet Propulsion Laboratory and the one used here, was 944 Hidalgo in 1920. However, they were not recognized as a distinct population until the discovery of 2060 Chiron in 1977. The largest confirmed centaur is 10199 Chariklo, which at 250 kilometers in diameter is as big as a mid-sized main-belt asteroid, and is known to have a system of rings. It was discovered in 1997.

↑ Return to Menu

Retrograde and prograde motion in the context of Geostationary orbit

A geostationary orbit, also referred to as a (GEO), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator, 42,164 km (26,199 mi) in radius from Earth's center, and following the direction of Earth's rotation.

An object in such an orbit has an orbital period equal to Earth's rotational period, one sidereal day, and so to ground observers it appears motionless, in a fixed position in the sky. The concept of a geostationary orbit was popularised by the science fiction writer Arthur C. Clarke in the 1940s as a way to revolutionise telecommunications, and the first satellite to be placed in this kind of orbit was launched in 1963.

↑ Return to Menu