Reliability engineering in the context of Reliable delivery


Reliability engineering in the context of Reliable delivery

Reliability engineering Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Reliability engineering in the context of "Reliable delivery"


⭐ Core Definition: Reliability engineering

Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability is defined as the probability that a product, system, or service will perform its intended function adequately for a specified period of time; or will operate in a defined environment without failure. Reliability is closely related to availability, which is typically described as the ability of a component or system to function at a specified moment or interval of time.

The reliability function is theoretically defined as the probability of success. In practice, it is calculated using different techniques, and its value ranges between 0 and 1, where 0 indicates no probability of success while 1 indicates definite success. This probability is estimated from detailed (physics of failure) analysis, previous data sets, or through reliability testing and reliability modeling. Availability, testability, maintainability, and maintenance are often defined as a part of "reliability engineering" in reliability programs. Reliability often plays a key role in the cost-effectiveness of systems.

↓ Menu
HINT:

👉 Reliability engineering in the context of Reliable delivery

In computer networking, a reliable protocol is a communication protocol that notifies the sender whether or not the delivery of data to intended recipients was successful. Reliability is a synonym for assurance, which is the term used by the ITU and ATM Forum, and leads to fault-tolerant messaging.

Reliable protocols typically incur more overhead than unreliable protocols, and as a result, function more slowly and with less scalability. This often is not an issue for unicast protocols, but it may become a problem for reliable multicast protocols.

↓ Explore More Topics
In this Dossier

Reliability engineering in the context of Systems engineering


Systems engineering is an interdisciplinary field of engineering and engineering management that focuses on how to design, integrate, and manage complex systems over their life cycles. At its core, systems engineering utilizes systems thinking principles to organize this body of knowledge. The individual outcome of such efforts, an engineered system, can be defined as a combination of components that work in synergy to collectively perform a useful function.

Issues such as requirements engineering, reliability, logistics, coordination of different teams, testing and evaluation, maintainability, and many other disciplines, aka "ilities", necessary for successful system design, development, implementation, and ultimate decommission become more difficult when dealing with large or complex projects. Systems engineering deals with work processes, optimization methods, and risk management tools in such projects. It overlaps technical and human-centered disciplines such as industrial engineering, production systems engineering, process systems engineering, mechanical engineering, manufacturing engineering, production engineering, control engineering, software engineering, electrical engineering, cybernetics, aerospace engineering, organizational studies, civil engineering and project management. Systems engineering ensures that all likely aspects of a project or system are considered and integrated into a whole.

View the full Wikipedia page for Systems engineering
↑ Return to Menu

Reliability engineering in the context of Root cause analysis

In science and reliability engineering, root-cause analysis (RCA) is a method of problem solving used for identifying the root causes of faults or problems. It is widely used in IT operations, manufacturing, telecommunications, industrial process control, accident analysis (e.g., in aviation, rail transport, or nuclear plants), medical diagnosis, the healthcare industry (e.g., for epidemiology). Root-cause analysis is a form of inductive inference (first create a theory, or root, based on empirical evidence, or causes) and deductive inference (test the theory, i.e., the underlying causal mechanisms, with empirical data).

View the full Wikipedia page for Root cause analysis
↑ Return to Menu

Reliability engineering in the context of Thermal management (electronics)

All electronic devices and circuitry generate excess heat and thus require thermal management to improve reliability and prevent premature failure. The amount of heat output is equal to the power input, if there are no other energy interactions. There are several techniques for cooling including various styles of heat sinks, thermoelectric coolers, forced air systems and fans, heat pipes, and others. In cases of extreme low environmental temperatures, it may actually be necessary to heat the electronic components to achieve satisfactory operation.

View the full Wikipedia page for Thermal management (electronics)
↑ Return to Menu

Reliability engineering in the context of Network availability

In reliability engineering, the term availability has the following meanings:

  • The degree to which a system, subsystem or equipment is in a specified operable and committable state at the start of a mission, when the mission is called for at an unknown, i.e. a random, time.
  • The probability that an item will operate satisfactorily at a given point in time when used under stated conditions in an ideal support environment.

Normally high availability systems might be specified as 99.98%, 99.999% or 99.9996%. The converse, unavailability, is 1 minus the availability.

View the full Wikipedia page for Network availability
↑ Return to Menu

Reliability engineering in the context of Airframe

The mechanical structure of an aircraft is known as the airframe. This structure is typically considered to include the fuselage, undercarriage, empennage and wings, and excludes the propulsion system.

Airframe design is a field of aerospace engineering that combines aerodynamics, materials technology and manufacturing methods with a focus on weight, strength and aerodynamic drag, as well as reliability and cost.

View the full Wikipedia page for Airframe
↑ Return to Menu

Reliability engineering in the context of Factor of safety

In engineering, a factor of safety (FoS) or safety factor (SF) expresses how much stronger a system is than it needs to be for its specified maximum load. Safety factors are often calculated using detailed analysis because comprehensive testing is impractical on many projects, such as bridges and buildings, but the structure's ability to carry a load must be determined to a reasonable accuracy.Many systems are intentionally built much stronger than needed for normal usage to allow for emergency situations, unexpected loads, misuse, or degradation (reliability).

Margin of safety (MoS or MS) is a related measure, expressed as a relative change.

View the full Wikipedia page for Factor of safety
↑ Return to Menu

Reliability engineering in the context of Service life

A product's service life is its period of use in service. Several related terms describe more precisely a product's life, from the point of manufacture, storage, and distribution, and eventual use.Service life has been defined as "a product's total life in use from the point of sale to the point of discard" and distinguished from replacement life, "the period after which the initial purchaser returns to the shop for a replacement". Determining a product's expected service life as part of business policy (product life cycle management) involves using tools and calculations from maintainability and reliability analysis. Service life represents a commitment made by the item's manufacturer and is usually specified as a median. It is the time that any manufactured item can be expected to be "serviceable" or supported by its manufacturer.

Service life is not to be confused with shelf life, which deals with storage time, or with technical life, which is the maximum period during which it can physically function. Service life also differs from predicted life, in terms of mean time before failure (MTBF) or maintenance-free operating period (MFOP). Predicted life is useful such that a manufacturer may estimate, by hypothetical modeling and calculation, a general rule for which it will honor warranty claims, or planning for mission fulfillment. The difference between service life and predicted life is most clear when considering mission time and reliability in comparison to MTBF and service life. For example, a missile system can have a mission time of less than one minute, service life of 20 years, active MTBF of 20 minutes, dormant MTBF of 50 years, and reliability of 99.9999%.

View the full Wikipedia page for Service life
↑ Return to Menu

Reliability engineering in the context of Computer compatibility

A family of computer models is said to be compatible if certain software that runs on one of the models can also be run on all other models of the family. The computer models may differ in performance, reliability or some other characteristic. These differences may affect the outcome of the running of the software.

View the full Wikipedia page for Computer compatibility
↑ Return to Menu

Reliability engineering in the context of RAID

RAID (redundant array of inexpensive disks or redundant array of independent disks) is a data storage virtualization technology that combines multiple physical data storage components into one or more logical units for the purposes of data redundancy, performance improvement, or both. This is in contrast to the previous concept of highly reliable mainframe disk drives known as single large expensive disk (SLED).

Data is distributed across the drives in one of several ways, referred to as RAID levels, depending on the required level of redundancy and performance. The different schemes, or data distribution layouts, are named by the word "RAID" followed by a number, for example RAID 0 or RAID 1. Each scheme, or RAID level, provides a different balance among the key goals: reliability, availability, performance, and capacity. RAID levels greater than RAID 0 provide protection against unrecoverable sector read errors, as well as against failures of whole physical drives.

View the full Wikipedia page for RAID
↑ Return to Menu