Redox in the context of Stagnosol


Redox in the context of Stagnosol

Redox Study page number 1 of 7

Play TriviaQuestions Online!

or

Skip to study material about Redox in the context of "Stagnosol"


⭐ Core Definition: Redox

Redox (/ˈrɛdɒks/ RED-oks, /ˈrdɒks/ REE-doks, reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state. The oxidation and reduction processes occur simultaneously in the chemical reaction.

↓ Menu
HINT:

In this Dossier

Redox in the context of Latent image

A latent image is an invisible image produced by the exposure to light of a photosensitive material such as photographic film. When photographic film is developed, the area that was exposed darkens and forms a visible image. In the early days of photography, the nature of the invisible change in the silver halide crystals of the film's emulsion coating was unknown, so the image was said to be "latent" until the film was treated with photographic developer.

In more physical terms, a latent image is a small cluster of metallic silver atoms formed in or on a silver halide crystal due to reduction of interstitial silver ions by photoelectrons (a photolytic silver cluster). If intense exposure continues, such photolytic silver clusters grow to visible sizes. This is called printing out the image. On the other hand, the formation of a visible image by the action of photographic developer is called developing out the image.

View the full Wikipedia page for Latent image
↑ Return to Menu

Redox in the context of Photographic developer

In the processing of photographic films, plates or papers, the photographic developer (or just developer) is one or more chemicals that convert the latent image to a visible image. Developing agents achieve this conversion by reducing the silver halides, which are pale-colored, into silver metal, which is black when in the form of fine particles. The conversion occurs within the gelatine matrix. The special feature of photography is that the developer acts more quickly on those particles of silver halide that have been exposed to light. When left in developer, all the silver halides will eventually be reduced and turn black. Generally, the longer a developer is allowed to work, the darker the image.

View the full Wikipedia page for Photographic developer
↑ Return to Menu

Redox in the context of Etching

Etching is traditionally the process of using strong acid or mordant to cut into the unprotected parts of a metal surface to create a design in intaglio (incised) in the metal. In modern manufacturing, other chemicals may be used on other types of material. As a method of printmaking, it is, along with engraving, the most important technique for old master prints, and remains in wide use today. In a number of modern variants such as microfabrication etching and photochemical milling, it is a crucial technique in modern technology, including circuit boards.

In traditional pure etching, a metal plate (usually of copper, zinc or steel) is covered with a waxy ground which is resistant to acid. The artist then scratches off the ground with a pointed etching needle where the artist wants a line to appear in the finished piece, exposing the bare metal. The échoppe, a tool with a slanted oval section, is also used for "swelling" lines. The plate is then dipped in a bath of acid, known as the mordant (French for "biting") or etchant, or has acid washed over it. The acid "bites" into the metal (it undergoes a redox reaction) to a depth depending on time and acid strength, leaving behind the drawing (as carved into the wax) on the metal plate. The remaining ground is then cleaned off the plate. For first and renewed uses the plate is inked in any chosen non-corrosive ink all over and the surface ink drained and wiped clean, leaving ink in the etched forms.

View the full Wikipedia page for Etching
↑ Return to Menu

Redox in the context of Puddling (metallurgy)

Puddling is the process of converting pig iron to bar (wrought) iron in a coal fired reverberatory furnace. It was developed in England during the 1780s. The molten pig iron was stirred in a reverberatory furnace, in an oxidizing environment to burn the carbon, resulting in wrought iron. It was one of the most important processes for making the first appreciable volumes of valuable and useful bar iron (malleable wrought iron) without the use of charcoal. Eventually, the furnace would be used to make small quantities of specialty steels.

Though it was not the first process to produce bar iron without charcoal, puddling was by far the most successful, and replaced the earlier potting and stamping processes, as well as the much older charcoal finery and bloomery processes. This enabled a great expansion of iron production to take place in Great Britain, and shortly afterwards, in North America. That expansion constitutes the beginnings of the Industrial Revolution so far as the iron industry is concerned. Most 19th century applications of wrought iron, including the Eiffel Tower, bridges, and the original framework of the Statue of Liberty, used puddled iron.

View the full Wikipedia page for Puddling (metallurgy)
↑ Return to Menu

Redox in the context of Steel

Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to its high elastic modulus, yield strength, fracture strength and low raw material cost, steel is one of the most commonly manufactured materials in the world. Steel is used in structures (as concrete reinforcing rods or steel beams), in bridges, infrastructure, tools, ships, trains, cars, bicycles, machines, electrical appliances, furniture, and weapons.

Iron is always the main element in steel, but other elements are used to produce various grades of steel, demonstrating altered material, mechanical, and microstructural properties. Stainless steels, for example, typically contain 18% chromium and exhibit improved corrosion and oxidation resistance versus their carbon steel counterpart. Galvanized steel is coated in a layer of zinc to achieve a similar effect. Under atmospheric pressures, steels generally take on two crystalline forms: body-centered cubic and face-centered cubic; however, depending on the thermal history and alloying, the microstructure may contain the distorted martensite phase or the carbon-rich cementite phase, which are tetragonal and orthorhombic, respectively. In the case of alloyed iron, the strengthening is primarily due to the introduction of carbon in the primarily-iron lattice, inhibiting deformation under mechanical stress. Alloying may also induce additional phases that affect the mechanical properties. In most cases, the engineered mechanical properties are at the expense of the ductility and elongation of the pure iron state, which decrease upon the addition of carbon.

View the full Wikipedia page for Steel
↑ Return to Menu

Redox in the context of Oxidizer

In one sense, an oxidizing agent is a chemical species that undergoes a chemical reaction in which it gains one or more electrons. In that sense, it is one component in an oxidation–reduction (redox) reaction. In the second sense, an oxidizing agent is a chemical species that transfers electronegative atoms, usually oxygen, to a substrate. Combustion, many explosives, and organic redox reactions involve atom-transfer reactions.

View the full Wikipedia page for Oxidizer
↑ Return to Menu

Redox in the context of Cellular respiration

Cellular respiration is the process of oxidizing biological fuels using an inorganic electron acceptor, such as oxygen, to drive production of adenosine triphosphate (ATP), which stores chemical energy in a biologically accessible form. Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells to transfer chemical energy from nutrients to ATP, with the flow of electrons to an electron acceptor, and then release waste products.

If the electron acceptor is oxygen, the process is more specifically known as aerobic cellular respiration. If the electron acceptor is a molecule other than oxygen, this is anaerobic cellular respiration – not to be confused with fermentation, which is also an anaerobic process, but it is not respiration, as no external electron acceptor is involved.

View the full Wikipedia page for Cellular respiration
↑ Return to Menu

Redox in the context of Ionic bond

Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, and is the primary interaction occurring in ionic compounds. It is one of the main types of bonding, along with covalent bonding and metallic bonding. Ions are atoms (or groups of atoms) with an electrostatic charge. Atoms that gain electrons make negatively charged ions (called anions). Atoms that lose electrons make positively charged ions (called cations). This transfer of electrons is known as electrovalence in contrast to covalence. In the simplest case, the cation is a metal atom and the anion is a nonmetal atom, but these ions can be more complex, e.g. polyatomic ions like NH
4
or SO
4
. In simpler words, an ionic bond results from the transfer of electrons from a metal to a non-metal to obtain a full valence shell for both atoms.

Clean ionic bonding – in which one atom or molecule completely transfers an electron to another – cannot exist: all ionic compounds have some degree of covalent bonding or electron sharing. Thus, the term "ionic bonding" is given when the ionic character is greater than the covalent character – that is, a bond in which there is a large difference in electronegativity between the cation and anion, causing the bonding to be more polar (ionic) than in covalent bonding where electrons are shared more equally. Bonds with partially ionic and partially covalent characters are called polar covalent bonds.

View the full Wikipedia page for Ionic bond
↑ Return to Menu

Redox in the context of Anoxic waters

Anoxic waters are areas of sea water, fresh water, or groundwater that are depleted of dissolved oxygen. The US Geological Survey defines anoxic groundwater as that with a dissolved oxygen concentration of less than 0.5 milligrams per litre. Anoxic waters can be contrasted with hypoxic waters, which are low (but not lacking) in dissolved oxygen. Often, hypoxia is defined as waters that have less than 2 milligrams per litre of dissolved oxygen. This condition is generally found in areas that have restricted water exchange.

In most cases, oxygen is prevented from reaching the deeper levels by a physical barrier, as well as by a pronounced density stratification, in which, for instance, denser, colder or hypersaline waters rest at the bottom of a basin. Anoxic conditions will occur if the rate of oxidation of organic matter by bacteria is greater than the supply of dissolved oxygen.

View the full Wikipedia page for Anoxic waters
↑ Return to Menu

Redox in the context of Chemotroph

A chemotroph is an organism that obtains energy by the oxidation of electron donors in their environments. These molecules can be organic (chemoorganotrophs) or inorganic (chemolithotrophs). The chemotroph designation is in contrast to phototrophs, which use photons. Chemotrophs can be either autotrophic or heterotrophic. Chemotrophs can be found in areas where electron donors are present in high concentration, for instance around hydrothermal vents.

View the full Wikipedia page for Chemotroph
↑ Return to Menu

Redox in the context of Oxidative phosphorylation

Oxidative phosphorylation or electron transport-linked phosphorylation or terminal oxidation, is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP). In eukaryotes, this takes place inside mitochondria. Almost all aerobic organisms carry out oxidative phosphorylation. This pathway is so pervasive because it releases more energy than fermentation.

In aerobic respiration, the energy stored in the chemical bonds of glucose is released by the cell in glycolysis and subsequently the citric acid cycle, producing carbon dioxide and the energetic electron donors NADH and FADH₂. Oxidative phosphorylation uses these molecules and O2 to produce ATP, which is used throughout the cell whenever energy is needed. During oxidative phosphorylation, electrons are transferred from the electron donors to a series of electron acceptors in a series of redox reactions ending in oxygen, whose reaction releases half of the total energy.

View the full Wikipedia page for Oxidative phosphorylation
↑ Return to Menu

Redox in the context of Fermentation (biochemistry)

Fermentation is a type of anaerobic metabolism that harnesses the redox potential of the reactants to make adenosine triphosphate (ATP) and organic end products. Organic molecules, such as glucose or other sugars, are catabolized and their electrons are transferred to other organic molecules (cofactors, coenzymes, etc.). Anaerobic glycolysis is a related term used to describe the occurrence of fermentation in organisms (usually multicellular organisms such as animals) when aerobic respiration cannot keep up with the ATP demand, due to insufficient oxygen supply or anaerobic conditions.

Fermentation is important in several areas of human society. Humans have used fermentation in the production and preservation of food for 13,000 years. It has been associated with health benefits, unique flavor profiles, and making products have better texture. Humans and their livestock also benefit from fermentation from the microbes in the gut that release end products that are subsequently used by the host for energy. Perhaps the most commonly known use for fermentation is at an industrial level to produce commodity chemicals, such as ethanol and lactate. Ethanol is used in a variety of alcoholic beverages (beers, wine, and spirits) while lactate can be neutralized to lactic acid and be used for food preservation, curing agent, or a flavoring agent.

View the full Wikipedia page for Fermentation (biochemistry)
↑ Return to Menu

Redox in the context of Autotrophy

An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs produce complex organic compounds (such as carbohydrates, fats, and proteins) using carbon from simple substances such as carbon dioxide, generally using energy from light or inorganic chemical reactions. Autotrophs do not need a living source of carbon or energy and are the producers in a food chain, such as plants on land or algae in water. Autotrophs can reduce carbon dioxide to make organic compounds for biosynthesis and as stored chemical fuel. Most autotrophs use water as the reducing agent, but some can use other hydrogen compounds such as hydrogen sulfide.

The primary producers can convert the energy in the light (phototroph and photoautotroph) or the energy in inorganic chemical compounds (chemotrophs or chemolithotrophs) to build organic molecules, which is usually accumulated in the form of biomass and will be used as carbon and energy source by other organisms (e.g. heterotrophs and mixotrophs). The photoautotrophs are the main primary producers, converting the energy of the light into chemical energy through photosynthesis, ultimately building organic molecules from carbon dioxide, an inorganic carbon source. Examples of chemolithotrophs are some archaea and bacteria (unicellular organisms) that produce biomass from the oxidation of inorganic chemical compounds; these organisms are called chemoautotrophs, and are frequently found in hydrothermal vents in the deep ocean. Primary producers are at the lowest trophic level, and are the reasons why Earth sustains life to this day.

View the full Wikipedia page for Autotrophy
↑ Return to Menu

Redox in the context of Phlogiston

The phlogiston theory, a superseded scientific theory, postulated the existence of a fire-like element dubbed phlogiston (/flɒˈɪstən, fl-, -ɒn/) contained within combustible bodies and released during combustion. The name comes from the Ancient Greek φλογιστόν phlogistón (burning up), from φλόξ phlóx (flame). The idea of a phlogistic substance was first proposed in 1669 by Johann Joachim Becher and later put together more formally in 1697 by Georg Ernst Stahl. Phlogiston theory attempted to explain chemical processes such as combustion and rusting, now collectively known as oxidation. The theory was challenged by the concomitant mass increase and was abandoned before the end of the 18th century following experiments by Antoine Lavoisier in the 1770s and by other scientists. Phlogiston theory led to experiments that ultimately resulted in the identification (c. 1771), and naming (1777), of oxygen by Joseph Priestley and Antoine Lavoisier, respectively.

View the full Wikipedia page for Phlogiston
↑ Return to Menu

Redox in the context of Food preservation

Food preservation includes processes that make food more resistant to microorganism growth and slow the oxidation of fats. This slows down the decomposition and rancidification process. Food preservation may also include processes that inhibit visual deterioration, such as the enzymatic browning reaction in apples after they are cut during food preparation. By preserving food, food waste can be reduced, which is an important way to decrease production costs and increase the efficiency of food systems, improve food security and nutrition and contribute towards environmental sustainability. For instance, it can reduce the environmental impact of food production.

Many processes designed to preserve food involve more than one food preservation method. Preserving fruit by turning it into jam, for example, involves boiling (to reduce the fruit's moisture content and to kill bacteria, etc.), sugaring (to prevent their re-growth) and sealing within an airtight jar (to prevent recontamination).

View the full Wikipedia page for Food preservation
↑ Return to Menu

Redox in the context of Combustion

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion (e.g., using a lit match to light a fire), the heat from a flame may provide enough energy to make the reaction self-sustaining. The study of combustion is known as combustion science.

Combustion is often a complicated sequence of elementary radical reactions. Solid fuels, such as wood and coal, first undergo endothermic pyrolysis to produce gaseous fuels whose combustion then supplies the heat required to produce more of them. Combustion is often hot enough that incandescent light in the form of either glowing or a flame is produced. A simple example can be seen in the combustion of hydrogen and oxygen into water vapor, a reaction which is commonly used to fuel rocket engines. This reaction releases 242 kJ/mol of heat and reduces the enthalpy accordingly (at constant temperature and pressure):

View the full Wikipedia page for Combustion
↑ Return to Menu