Rebar in the context of "Reinforced concrete"

Play Trivia Questions online!

or

Skip to study material about Rebar in the context of "Reinforced concrete"

Ad spacer

⭐ Core Definition: Rebar

Rebar (short for reinforcement bar or reinforcing bar), known when massed as reinforcing steel or steel reinforcement, is a tension device added to concrete to form reinforced concrete and reinforced masonry structures to strengthen and aid the concrete under tension. Concrete is strong under compression, but has low tensile strength. Rebar usually consists of steel bars which significantly increase the tensile strength of the structure. Rebar surfaces feature a continuous series of ribs, lugs or indentations to promote a better bond with the concrete and reduce the risk of slippage.

The most common type of rebar is carbon steel, typically consisting of hot-rolled round bars with deformation patterns embossed into its surface. Steel and concrete have similar coefficients of thermal expansion, so a concrete structural member reinforced with steel will experience minimal differential stress as the temperature changes.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Rebar in the context of Reinforced concrete

Reinforced concrete, also called ferroconcrete or ferro-concrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel reinforcing bars (known as rebar) and is usually embedded passively in the concrete before the concrete sets. However, post-tensioning is also employed as a technique to reinforce the concrete. In terms of volume used annually, it is one of the most common engineering materials. In corrosion engineering terms, when designed correctly, the alkalinity of the concrete protects the steel rebar from corrosion.

↓ Explore More Topics
In this Dossier

Rebar in the context of Concrete

Concrete is a composite material composed of aggregate bound together with a fluid cement that cures to a solid over time. It is the second-most-used substance (after water), the most–widely used building material, and the most-manufactured material in the world.

When aggregate is mixed with dry Portland cement and water, the mixture forms a fluid slurry that can be poured and molded into shape. The cement reacts with the water through a process called hydration, which hardens it after several hours to form a solid matrix that binds the materials together into a durable stone-like material with various uses. This time allows concrete to not only be cast in forms, but also to have a variety of tooled processes performed. The hydration process is exothermic, which means that ambient temperature plays a significant role in how long it takes concrete to set. Often, additives (such as pozzolans or superplasticizers) are included in the mixture to improve the physical properties of the wet mix, delay or accelerate the curing time, or otherwise modify the finished material. Most structural concrete is poured with reinforcing materials (such as steel rebar) embedded to provide tensile strength, yielding reinforced concrete.

↑ Return to Menu

Rebar in the context of Steel

Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to its high elastic modulus, yield strength, fracture strength and low raw material cost, steel is one of the most commonly manufactured materials in the world. Steel is used in structures (as concrete reinforcing rods or steel beams), in bridges, infrastructure, tools, ships, trains, cars, bicycles, machines, electrical appliances, furniture, and weapons.

Iron is always the main element in steel, but other elements are used to produce various grades of steel, demonstrating altered material, mechanical, and microstructural properties. Stainless steels, for example, typically contain 18% chromium and exhibit improved corrosion and oxidation resistance versus their carbon steel counterpart. Galvanized steel is coated in a layer of zinc to achieve a similar effect. Under atmospheric pressures, steels generally take on two crystalline forms: body-centered cubic and face-centered cubic; however, depending on the thermal history and alloying, the microstructure may contain the distorted martensite phase or the carbon-rich cementite phase, which are tetragonal and orthorhombic, respectively. In the case of alloyed iron, the strengthening is primarily due to the introduction of carbon in the primarily-iron lattice, inhibiting deformation under mechanical stress. Alloying may also induce additional phases that affect the mechanical properties. In most cases, the engineered mechanical properties are at the expense of the ductility and elongation of the pure iron state, which decrease upon the addition of carbon.

↑ Return to Menu

Rebar in the context of Building material

Building material is material used for construction. Many naturally occurring substances, such as clay, rocks, sand, wood, and even twigs and leaves, have been used to construct buildings and other structures, like bridges. Apart from naturally occurring materials, many man-made products are in use, some more and some less synthetic. The manufacturing of building materials is an established industry in many countries and the use of these materials is typically segmented into specific specialty trades, such as carpentry, insulation, plumbing, and roofing work. They provide the make-up of habitats and structures including homes.

↑ Return to Menu

Rebar in the context of Endoskeleton

An endoskeleton (from Ancient Greek ἔνδον (éndon), meaning "inside", and σκελετός (skeletós), meaning "skeleton") is a structural frame (skeleton) — usually composed of mineralized tissue — on the inside of an animal, overlaid by soft tissues. Endoskeletons serve as structural support against gravity and mechanical loads, and provide anchoring attachment sites for skeletal muscles to transmit force and allow movements and locomotion.

Vertebrates and the closely related cephalochordates are the predominant animal clade with endoskeletons (made of mostly bone and sometimes cartilage, as well as notochordal glycoprotein and collagen fibers), although invertebrates such as sponges also have evolved a form of "rebar" endoskeletons made of diffuse meshworks of calcite/silica structural elements called spicules, and echinoderms have a dermal calcite endoskeleton known as ossicles. Some coleoid cephalopods (squids and cuttlefish) have an internalized vestigial aragonite/calcite-chitin shell known as gladius or cuttlebone, which can serve as muscle attachments but the main function is often to maintain buoyancy rather than to give structural support, and their body shape is largely maintained by hydroskeleton.

↑ Return to Menu

Rebar in the context of Filler (materials)

Filler materials are particles added to binders (resin, thermoplastics, cement) to make a composite material. Filler materials improve specific properties or make the product cheaper.

Coarse filler materials such as construction aggregate and rebar are used in the building industry to make plaster, mortar and concrete.

↑ Return to Menu

Rebar in the context of Formwork

Formwork is molds into which concrete or similar materials are either precast or cast-in-place. In the context of concrete construction, the falsework supports the shuttering molds. In specialty applications formwork may be permanently incorporated into the final structure, adding insulation or helping reinforce the finished structure.

↑ Return to Menu