Real line in the context of Square roots


Real line in the context of Square roots

Real line Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Real line in the context of "Square roots"


⭐ Core Definition: Real line

A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin point representing the number zero and evenly spaced marks in either direction representing integers, imagined to extend infinitely. The association between numbers and points on the line links arithmetical operations on numbers to geometric relations between points, and provides a conceptual framework for learning mathematics.

In elementary mathematics, the number line is initially used to teach addition and subtraction of integers, especially involving negative numbers. As students progress, more kinds of numbers can be placed on the line, including fractions, decimal fractions, square roots, and transcendental numbers such as the circle constant π: Every point of the number line corresponds to a unique real number, and every real number to a unique point.

↓ Menu
HINT:

In this Dossier

Real line in the context of Integral

In mathematics, an integral is the continuous analog of a sum, and is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, the other being differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide variety of scientific fields thereafter.

A definite integral computes the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line. Conventionally, areas above the horizontal axis of the plane are positive while areas below are negative. Integrals also refer to the concept of an antiderivative, a function whose derivative is the given function; in this case, they are also called indefinite integrals. The fundamental theorem of calculus relates definite integration to differentiation and provides a method to compute the definite integral of a function when its antiderivative is known; differentiation and integration are inverse operations.

View the full Wikipedia page for Integral
↑ Return to Menu

Real line in the context of Double integration

In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).

Integrals of a function of two variables over a region in (the real-number plane) are called double integrals, and integrals of a function of three variables over a region in (real-number 3D space) are called triple integrals. For repeated antidifferentiation of a single-variable function, see the Cauchy formula for repeated integration.

View the full Wikipedia page for Double integration
↑ Return to Menu

Real line in the context of Real coordinate plane

In mathematics, the real coordinate space or real coordinate n-space, of dimension n, denoted R or , is the set of all ordered n-tuples of real numbers, that is the set of all sequences of n real numbers, also known as coordinate vectors.Special cases are called the real line R, the real coordinate plane R, and the real coordinate three-dimensional space R.With component-wise addition and scalar multiplication, it is a real vector space.

The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the vector space. Similarly, the Cartesian coordinates of the points of a Euclidean space of dimension n, E (Euclidean line, E; Euclidean plane, E; Euclidean three-dimensional space, E) form a real coordinate space of dimension n.

View the full Wikipedia page for Real coordinate plane
↑ Return to Menu

Real line in the context of Continuous optimization

Continuous optimization is a branch of optimization in applied mathematics.

As opposed to discrete optimization, the variables used in the objective function are required to be continuous variables—that is, to be chosen from a set of real values between which there are no gaps (values from intervals of the real line). Because of this continuity assumption, continuous optimization allows the use of calculus techniques.

View the full Wikipedia page for Continuous optimization
↑ Return to Menu

Real line in the context of Open set

In mathematics, an open set is a generalization of an open interval in the real line.

In a metric space (a set with a distance defined between every two points), an open set is a set that, with every point P in it, contains all points of the metric space that are sufficiently near to P (that is, all points whose distance to P is less than some value depending on P).

View the full Wikipedia page for Open set
↑ Return to Menu

Real line in the context of Completeness of the real numbers

Completeness is a property of the real numbers that, intuitively, implies that there are no "gaps" (in Dedekind's terminology) or "missing points" in the real number line. This contrasts with the rational numbers, whose corresponding number line has a "gap" at each irrational value. In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number.

Depending on the construction of the real numbers used, completeness may take the form of an axiom (the completeness axiom), or may be a theorem proven from the construction. There are many equivalent forms of completeness, the most prominent being Dedekind completeness and Cauchy completeness (completeness as a metric space).

View the full Wikipedia page for Completeness of the real numbers
↑ Return to Menu

Real line in the context of Harmonic analysis

Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency. The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals. Generalizing these transforms to other domains is generally called Fourier analysis, although the term is sometimes used interchangeably with harmonic analysis. Harmonic analysis has become a vast subject with applications in areas as diverse as number theory, representation theory, signal processing, quantum mechanics, tidal analysis, spectral analysis, and neuroscience.

The term "harmonics" originated from the Ancient Greek word harmonikos, meaning "skilled in music". In physical eigenvalue problems, it began to mean waves whose frequencies are integer multiples of one another, as are the frequencies of the harmonics of music notes. Still, the term has been generalized beyond its original meaning.

View the full Wikipedia page for Harmonic analysis
↑ Return to Menu

Real line in the context of Compact space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that every infinite sequence of points has limiting values. For example, the real line is not compact since the sequence of natural numbers has no real limiting value. The open interval (0,1) is not compact because it excludes the limiting values 0 and 1, whereas the closed interval [0,1] is compact. Similarly, the space of rational numbers is not compact, because every irrational number is the limit of the rational numbers that are lower than it. On the other hand, the extended real number line is compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

One such generalization is that a topological space is sequentially compact if every infinite sequence of points sampled from the space has an infinite subsequence that converges to some point of the space. The Bolzano–Weierstrass theorem states that a subset of Euclidean space is compact in this sequential sense if and only if it is closed and bounded. Thus, if one chooses an infinite number of points in the closed unit interval [0, 1], some of those points will get arbitrarily close to some real number in that space. For instance, some of the numbers in the sequence 1/2, 4/5, 1/3, 5/6, 1/4, 6/7, ... accumulate to 0 (while others accumulate to 1). Since neither 0 nor 1 are members of the open unit interval (0, 1), those same sets of points would not accumulate to any point of it, so the open unit interval is not compact. Although subsets (subspaces) of Euclidean space can be compact, the entire space itself is not compact, since it is not bounded. For example, considering (the real number line), the sequence of points 0,  1,  2,  3, ... has no subsequence that converges to any real number.

View the full Wikipedia page for Compact space
↑ Return to Menu

Real line in the context of Point process

In statistics and probability theory, a point process or point field is a set of a random number of mathematical points randomly located on a mathematical space such as the real line or Euclidean space.

Point processes on the real line form an important special case that is particularly amenable to study, because the points are ordered in a natural way, and the whole point process can be described completely by the (random) intervals between the points. These point processes are frequently used as models for random events in time, such as the arrival of customers in a queue (queueing theory), of impulses in a neuron (computational neuroscience), particles in a Geiger counter, location of radio stations in a telecommunication network or of searches on the world-wide web.

View the full Wikipedia page for Point process
↑ Return to Menu

Real line in the context of Double integral

In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).

Integrals of a function of two variables over a region in (the real-number plane) are called double integrals, and integrals of a function of three variables over a region in (real-number 3D space) are called triple integrals.

View the full Wikipedia page for Double integral
↑ Return to Menu

Real line in the context of Real projective line

In geometry, a real projective line is a projective line over the real numbers. It is an extension of the usual concept of a line that has been historically introduced to solve a problem set by visual perspective: two parallel lines do not intersect but seem to intersect "at infinity". For solving this problem, points at infinity have been introduced, in such a way that in a real projective plane, two distinct projective lines meet in exactly one point. The set of these points at infinity, the "horizon" of the visual perspective in the plane, is a real projective line. It is the set of directions emanating from an observer situated at any point, with opposite directions identified.

An example of a real projective line is the projectively extended real line, which is often called the projective line.

View the full Wikipedia page for Real projective line
↑ Return to Menu

Real line in the context of Boxcar function

In mathematics, a boxcar function is any function which is zero over the entire real line except for a single interval where it is equal to a constant, A. The function is named after its graph's resemblance to a boxcar, a type of railroad car. The boxcar function can be expressed in terms of the uniform distribution aswhere f(a,b;x) is the uniform distribution of x for the interval [a, b] and is the Heaviside step function. As with most such discontinuous functions, there is a question of the value at the transition points, which are usually best chosen depending on the individual application.

When a boxcar function is selected as the impulse response of a filter, the result is a simple moving average filter, whose frequency response is a sinc-in-frequency, a type of low-pass filter.

View the full Wikipedia page for Boxcar function
↑ Return to Menu

Real line in the context of Birational geometry

In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles.

View the full Wikipedia page for Birational geometry
↑ Return to Menu