Compact space in the context of Real line


Compact space in the context of Real line

Compact space Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Compact space in the context of "Real line"


⭐ Core Definition: Compact space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that every infinite sequence of points has limiting values. For example, the real line is not compact since the sequence of natural numbers has no real limiting value. The open interval (0,1) is not compact because it excludes the limiting values 0 and 1, whereas the closed interval [0,1] is compact. Similarly, the space of rational numbers is not compact, because every irrational number is the limit of the rational numbers that are lower than it. On the other hand, the extended real number line is compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

One such generalization is that a topological space is sequentially compact if every infinite sequence of points sampled from the space has an infinite subsequence that converges to some point of the space. The Bolzano–Weierstrass theorem states that a subset of Euclidean space is compact in this sequential sense if and only if it is closed and bounded. Thus, if one chooses an infinite number of points in the closed unit interval [0, 1], some of those points will get arbitrarily close to some real number in that space. For instance, some of the numbers in the sequence 1/2, 4/5, 1/3, 5/6, 1/4, 6/7, ... accumulate to 0 (while others accumulate to 1). Since neither 0 nor 1 are members of the open unit interval (0, 1), those same sets of points would not accumulate to any point of it, so the open unit interval is not compact. Although subsets (subspaces) of Euclidean space can be compact, the entire space itself is not compact, since it is not bounded. For example, considering (the real number line), the sequence of points 0,  1,  2,  3, ... has no subsequence that converges to any real number.

↓ Menu
HINT:

In this Dossier

Compact space in the context of Topological

Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself.

A topological space is a set endowed with a structure, called a topology, which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. The following are basic examples of topological properties: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; connectedness, which allows distinguishing a circle from two non-intersecting circles.

View the full Wikipedia page for Topological
↑ Return to Menu

Compact space in the context of Ergodic

In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space in which the system moves, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process. Ergodicity is a property of the system; it is a statement that the system cannot be reduced or factored into smaller components. Ergodic theory is the study of systems possessing ergodicity.

Ergodic systems occur in a broad range of systems in physics and in geometry. This can be roughly understood to be due to a common phenomenon: the motions of particles, that is, geodesics, on a hyperbolic manifold are divergent; when that manifold is compact, that is, of finite size, those orbits return to the same general area, eventually filling the entire space.

View the full Wikipedia page for Ergodic
↑ Return to Menu

Compact space in the context of Hypercube

In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract. It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length. A unit hypercube's longest diagonal in n dimensions is equal to .

An n-dimensional hypercube is more commonly referred to as an n-cube or sometimes as an n-dimensional cube. The term measure polytope (originally from Elte, 1912) is also used, notably in the work of H. S. M. Coxeter who also labels the hypercubes the γn polytopes.

View the full Wikipedia page for Hypercube
↑ Return to Menu

Compact space in the context of Zorn's lemma

Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least one maximal element.

The lemma was proven (assuming the axiom of choice) by Kazimierz Kuratowski in 1922 and independently by Max Zorn in 1935. It occurs in the proofs of several theorems of crucial importance, for instance the Hahn–Banach theorem in functional analysis, the theorem that every vector space has a basis, Tychonoff's theorem in topology stating that every product of compact spaces is compact, and the theorems in abstract algebra that in a ring with identity every proper ideal is contained in a maximal ideal and that every field has an algebraic closure.

View the full Wikipedia page for Zorn's lemma
↑ Return to Menu

Compact space in the context of Klein quartic

In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus 3 with the highest possible order automorphism group for this genus, namely order 168 orientation-preserving automorphisms, and 168 × 2 = 336 automorphisms if orientation may be reversed. As such, the Klein quartic is the Hurwitz surface of lowest possible genus; see Hurwitz's automorphisms theorem. Its (orientation-preserving) automorphism group is isomorphic to PSL(2, 7), the second-smallest non-abelian simple group after the alternating group A5. The quartic was first described in (Klein 1878b).

Klein's quartic occurs in many branches of mathematics, in contexts including representation theory, homology theory, Fermat's Last Theorem, and the Stark–Heegner theorem on imaginary quadratic number fields of class number one; see (Levy 1999) for a survey of properties.

View the full Wikipedia page for Klein quartic
↑ Return to Menu

Compact space in the context of Proper map

↑ Return to Menu

Compact space in the context of Closed manifold

In mathematics, a closed manifold is a manifold without boundary that is compact.In comparison, an open manifold is a manifold without boundary that has only non-compact components.

View the full Wikipedia page for Closed manifold
↑ Return to Menu

Compact space in the context of Tychonoff's theorem

In mathematics, Tychonoff's theorem states that the product of any collection of compact topological spaces is compact with respect to the product topology. The theorem is named after Andrey Nikolayevich Tikhonov (whose surname sometimes is transcribed Tychonoff), who proved it first in 1930 for powers of the closed unit interval and in 1935 stated the full theorem along with the remark that its proof was the same as for the special case. The earliest known published proof is contained in a 1935 article by Tychonoff, "Über einen Funktionenraum".

Tychonoff's theorem is one of the most foundational results in general topology. The theorem is also valid for topological spaces based on fuzzy sets.

View the full Wikipedia page for Tychonoff's theorem
↑ Return to Menu