Irrational number in the context of "Completeness of the real numbers"

Play Trivia Questions online!

or

Skip to study material about Irrational number in the context of "Completeness of the real numbers"

Ad spacer

⭐ Core Definition: Irrational number

In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being incommensurable, meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself.

Among irrational numbers are the ratio π of a circle's circumference to its diameter, Euler's number e, the golden ratio φ, and the square root of two. In fact, all square roots of natural numbers, other than of perfect squares, are irrational.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Irrational number in the context of Theaetetus (mathematician)

Theaetetus of Athens (/ˌθɪˈttəs/; Ancient Greek: Θεαίτητος Theaítētos; c. 417 – c. 369 BCE), possibly the son of Euphronius of the Athenian deme Sunium, was a Greek mathematician. His principal contributions were on irrational lengths, which was included in Book X of Euclid's Elements and proving that there are precisely five regular convex polyhedra. A friend of Socrates and Plato, he is the central character in Plato's eponymous Socratic dialogue.

Theaetetus, like Plato, was a student of the Greek mathematician Theodorus of Cyrene. Cyrene was a prosperous Greek colony on the coast of North Africa, in what is now Libya, on the eastern end of the Gulf of Sidra. Theodorus had explored the theory of incommensurable quantities, and Theaetetus continued those studies with great enthusiasm; specifically, he classified various forms of irrational numbers according to the way they are expressed as square roots. This theory is presented in great detail in Book X of Euclid's Elements.

↑ Return to Menu

Irrational number in the context of Commensurability (mathematics)

In mathematics, two non-zero real numbers a and b are said to be commensurable if their ratio a/b is a rational number; otherwise a and b are called incommensurable. (Recall that a rational number is one that is equivalent to the ratio of two integers.) There is a more general notion of commensurability in group theory.

For example, the numbers 3 and 2 are commensurable because their ratio, 3/2, is a rational number. The numbers and are also commensurable because their ratio, , is a rational number. However, the numbers and 2 are incommensurable because their ratio, , is an irrational number.

↑ Return to Menu

Irrational number in the context of Arithmetic

Arithmetic is an elementary branch of mathematics that deals with numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms.

Arithmetic systems can be distinguished based on the type of numbers they operate on. Integer arithmetic is about calculations with positive and negative integers. Rational number arithmetic involves operations on fractions of integers. Real number arithmetic is about calculations with real numbers, which include both rational and irrational numbers.

↑ Return to Menu

Irrational number in the context of Square root of 2

The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

Geometrically, the square root of 2 is the length of a diagonal across a square with sides of one unit of length; this follows from the Pythagorean theorem. It was probably the first number known to be irrational. The fraction 99/70 (≈ 1.4142857) is sometimes used as a good rational approximation with a reasonably small denominator.

↑ Return to Menu

Irrational number in the context of Pi

The number π (/p/ ; spelled out as pi) is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter. It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.

The number π is an irrational number, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as are commonly used to approximate it. Consequently, its decimal representation never ends, nor enters a permanently repeating pattern. It is a transcendental number, meaning that it cannot be a solution of an algebraic equation involving only finite sums, products, powers, and integers. The transcendence of π implies that it is impossible to solve the ancient challenge of squaring the circle with a compass and straightedge. The decimal digits of π appear to be randomly distributed, but no proof of this conjecture has been found.

↑ Return to Menu

Irrational number in the context of Subtraction

Subtraction (which is signified by the minus sign, –) is one of the four arithmetic operations along with addition, multiplication and division. Subtraction is an operation that represents removal of objects from a collection. For example, in the adjacent picture, there are 5 − 2 peaches—meaning 5 peaches with 2 taken away, resulting in a total of 3 peaches. Therefore, the difference of 5 and 2 is 3; that is, 5 − 2 = 3. While primarily associated with natural numbers in arithmetic, subtraction can also represent removing or decreasing physical and abstract quantities using different kinds of objects including negative numbers, fractions, irrational numbers, vectors, decimals, functions, and matrices.

In a sense, subtraction is the inverse of addition. That is, c = ab if and only if c + b = a. In words: the difference of two numbers is the number that gives the first one when added to the second one.

↑ Return to Menu

Irrational number in the context of Continued fraction

A continued fraction is a mathematical expression written as a fraction whose denominator contains a sum involving another fraction, which may itself be a simple or a continued fraction. If this iteration (repetitive process) terminates with a simple fraction, the result is a finite continued fraction; if it continues indefinitely, the result is an infinite continued fraction. The special case in which all numerators are equal to one is referred to as a simple (or regular) continued fraction. Any rational number can be expressed as a finite simple continued fraction, and any irrational number can be expressed as an infinite simple continued fraction.

Different areas of mathematics use different terminology and notation for continued fractions. In number theory, the unqualified term continued fraction usually refers to simple continued fractions, whereas the general case is referred to as generalized continued fractions. In complex analysis and numerical analysis, the general case is usually referred to by the unqualified term continued fraction.

↑ Return to Menu