Radiometric dating in the context of "Relative dating"

Play Trivia Questions online!

or

Skip to study material about Radiometric dating in the context of "Relative dating"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Radiometric dating in the context of Fossil

A fossil (from Classical Latin fossilis, lit.'obtained by digging') is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved in amber, hair, petrified wood and DNA remnants. The totality of fossils is known as the fossil record. Though the fossil record is incomplete, numerous studies have demonstrated that there is enough information available to give a good understanding of the pattern of diversification of life on Earth. In addition, the record can predict and fill gaps such as the discovery of Tiktaalik in the arctic of Canada.

Paleontology includes the study of fossils: their age, method of formation, and evolutionary significance. Specimens are sometimes considered to be fossils if they are over 10,000 years old. The oldest fossils are around 3.48 billion years to 4.1 billion years old. The observation in the 19th century that certain fossils were associated with certain rock strata led to the recognition of a geological timescale and the relative ages of different fossils. The development of radiometric dating techniques in the early 20th century allowed scientists to quantitatively measure the absolute ages of rocks and the fossils they host.

↑ Return to Menu

Radiometric dating in the context of Aluminium

Aluminium (the Commonwealth and preferred IUPAC name) or aluminum (North American English) is a chemical element; it has symbol Al and atomic number 13. It has a density lower than other common metals, about one-third that of steel. Aluminium has a great affinity towards oxygen, forming a protective layer of oxide on the surface when exposed to air. It visually resembles silver, both in its color and in its great ability to reflect light. It is soft, nonmagnetic, and ductile. It has one stable isotope, Al, which is highly abundant, making aluminium the 12th-most abundant element in the universe. The radioactivity of Al leads to it being used in radiometric dating.

Chemically, aluminium is a post-transition metal in the boron group; as is common for the group, aluminium forms compounds primarily in the +3 oxidation state. The aluminium cation Al is small and highly charged; as such, it has more polarizing power, and bonds formed by aluminium have a more covalent character. The strong affinity of aluminium for oxygen leads to the common occurrence of its oxides in nature. Aluminium is found on Earth primarily in rocks in the crust, where it is the third-most abundant element after oxygen and silicon, rather than in the mantle, and virtually never as the free metal. It is obtained industrially by mining bauxite, a sedimentary rock rich in aluminium minerals.

↑ Return to Menu

Radiometric dating in the context of Age of Earth

The age of Earth is estimated to be 4.54 ± 0.05 billion years. This age represents the final stages of Earth's accretion and planetary differentiation. Age estimates are based on evidence from radiometric age-dating of meteoritic material—consistent with the radiometric ages of the oldest-known terrestrial material and lunar samples—and astrophysical accretion models consistent with observations of planet formation in protoplanetary disks.

Following the development of radiometric dating in the early 20th century, measurements of lead in uranium-rich minerals showed that some were in excess of a billion years old. The oldest such minerals analyzed to date—small crystals of zircon from the Jack Hills of Western Australia—are at least 4.404 billion years old. Calcium–aluminium-rich inclusions—the oldest known solid constituents within meteorites that are formed within the Solar System—are 4.5673 ± 0.00016 billion years old giving a lower limit for the age of the Solar System.

↑ Return to Menu

Radiometric dating in the context of Relative ages

Relative dating is the science of determining the relative order of past events (i.e., the age of an object in comparison to another), without necessarily determining their absolute age (i.e., estimated age). In geology, rock or superficial deposits, fossils and lithologies can be used to correlate one stratigraphic column with another. Prior to the discovery of radiometric dating in the early 20th century, which provided a means of absolute dating, archaeologists and geologists used relative dating to determine ages of materials. Though relative dating can only determine the sequential order in which a series of events occurred, not when they occurred, it remains a useful technique. Relative dating by biostratigraphy is the preferred method in paleontology and is, in some respects, more accurate. The Law of Superposition, which states that older layers will be deeper in a site than more recent layers, was the summary outcome of 'relative dating' as observed in geology from the 17th century to the early 20th century.

↑ Return to Menu

Radiometric dating in the context of Late Heavy Bombardment

The Late Heavy Bombardment (LHB), or lunar cataclysm, is a hypothesized astronomical event thought to have occurred approximately 4.1 to 3.8 billion years (Ga) ago, at a time corresponding to the Neohadean and Eoarchean eras on Earth. According to the hypothesis, during this interval, a disproportionately large number of asteroids and comets collided into the terrestrial planets and their natural satellites in the inner Solar System, including Mercury, Venus, Earth (and the Moon) and Mars. These came from both post-accretion and planetary instability-driven populations of impactors. Although it has gained widespread credence, definitive evidence remains elusive.

Evidence for the LHB derives from moon rock samples of Lunar craters brought back by the Apollo program astronauts. Isotopic dating showed that the rocks were last molten during impact events in a rather narrow interval of time, suggesting that a large proportion of craters were formed during this period. Several hypotheses attempt to explain this apparent spike in the flux of impactors in the inner Solar System, but no consensus yet exists. The Nice model, popular among planetary scientists, postulates that the giant planets underwent orbital migration, scattering objects from the asteroid belt, Kuiper belt, or both, into eccentric orbits and into the path of the terrestrial planets.

↑ Return to Menu

Radiometric dating in the context of Hadean zircon

Hadean zircon is the oldest-surviving crustal material from the Earth's earliest geological time period, the Hadean eon, about 4 billion years ago. Zircon is a mineral that is commonly used for radiometric dating because it is highly resistant to chemical changes and appears in the form of small crystals or grains in most igneous and metamorphic host rocks.

Hadean zircon has very low abundance around the globe because of recycling of material by plate tectonics. When the rock at the surface is buried deep in the Earth it is heated and can recrystallise or melt. In the Jack Hills, Australia, scientists obtained a relatively comprehensive record of Hadean zircon crystals in contrast to other locations. The Jack Hills zircons are found in metamorphosed sediments that were initially deposited around 3 billion years ago, or during the Archean Eon. However, the zircon crystals there are older than the rocks that contain them. Many investigations have been carried out to find the absolute age and properties of zircon, for example the isotope ratios, mineral inclusions, and geochemistry of zircon. The characteristics of Hadean zircons show early Earth history and the mechanism of Earth's processes in the past. Based on the properties of these zircon crystals, many different geological models were proposed.

↑ Return to Menu

Radiometric dating in the context of Tonian

The Tonian (from Ancient Greek: τόνος, romanizedtónos, meaning "stretch") is the first geologic period of the Neoproterozoic Era. It lasted from 1000 to 720 Mya (million years ago). Instead of being based on stratigraphy, these dates are defined by the ICS based on radiometric chronometry. The Tonian is preceded by the Stenian Period of the Mesoproterozoic Era and followed by the Cryogenian.

Rifting leading to the breakup of supercontinent Rodinia, which had formed in the mid-Stenian, occurred during this period, starting from 900 to 850 Mya.

↑ Return to Menu