Aluminium-26 in the context of "Aluminium"

Play Trivia Questions online!

or

Skip to study material about Aluminium-26 in the context of "Aluminium"

Ad spacer

⭐ Core Definition: Aluminium-26

Aluminium-26 (Al, Al-26) is a radioactive isotope of the chemical element aluminium, decaying by either positron emission or electron capture to stable magnesium-26. The half-life of Al is 717,000 years. This is far too short for the isotope to survive as a primordial nuclide, but a small amount of it is produced by collisions of atoms with cosmic ray protons.

Decay of aluminium-26 also produces gamma rays and X-rays. The x-rays and Auger electrons are emitted by the excited atomic shell of the daughter Mg after the electron capture which typically leaves a hole in one of the lower sub-shells.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Aluminium-26 in the context of Aluminium

Aluminium (the Commonwealth and preferred IUPAC name) or aluminum (North American English) is a chemical element; it has symbol Al and atomic number 13. It has a density lower than other common metals, about one-third that of steel. Aluminium has a great affinity towards oxygen, forming a protective layer of oxide on the surface when exposed to air. It visually resembles silver, both in its color and in its great ability to reflect light. It is soft, nonmagnetic, and ductile. It has one stable isotope, Al, which is highly abundant, making aluminium the 12th-most abundant element in the universe. The radioactivity of Al leads to it being used in radiometric dating.

Chemically, aluminium is a post-transition metal in the boron group; as is common for the group, aluminium forms compounds primarily in the +3 oxidation state. The aluminium cation Al is small and highly charged; as such, it has more polarizing power, and bonds formed by aluminium have a more covalent character. The strong affinity of aluminium for oxygen leads to the common occurrence of its oxides in nature. Aluminium is found on Earth primarily in rocks in the crust, where it is the third-most abundant element after oxygen and silicon, rather than in the mantle, and virtually never as the free metal. It is obtained industrially by mining bauxite, a sedimentary rock rich in aluminium minerals.

↓ Explore More Topics
In this Dossier

Aluminium-26 in the context of Magma ocean

Magma oceans are vast fields of surface magma that exist during periods of a planet's or some natural satellite's accretion when the celestial body is completely or partly molten.

In the early Solar System, magma oceans were formed by the melting of planetesimals and planetary impacts. Small planetesimals are melted by the heat provided by the radioactive decay of aluminium-26. As planets grew larger, the energy was then supplied from giant impacts with other planetary bodies. Magma oceans are integral parts of planetary formation as they facilitate the formation of a core through metal segregation and an atmosphere and hydrosphere through degassing. Evidence exists to support the existence of magma oceans on both the Earth and the Moon. Magma oceans may survive for millions to tens of millions of years, interspersed by relatively mild conditions.

↑ Return to Menu