Mesoproterozoic in the context of "Tonian"

Play Trivia Questions online!

or

Skip to study material about Mesoproterozoic in the context of "Tonian"

Ad spacer

⭐ Core Definition: Mesoproterozoic

The Mesoproterozoic Era is a geologic era that occurred from 1,600 to 1,000 million years ago. The Mesoproterozoic was the first era of Earth's history for which a fairly definitive geological record survives. Continents existed during the preceding era (the Paleoproterozoic), but little is known about them. The continental masses of the Mesoproterozoic were more or less the same ones that exist today, although their arrangement on the Earth's surface was different.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Mesoproterozoic in the context of Tonian

The Tonian (from Ancient Greek: τόνος, romanizedtónos, meaning "stretch") is the first geologic period of the Neoproterozoic Era. It lasted from 1000 to 720 Mya (million years ago). Instead of being based on stratigraphy, these dates are defined by the ICS based on radiometric chronometry. The Tonian is preceded by the Stenian Period of the Mesoproterozoic Era and followed by the Cryogenian.

Rifting leading to the breakup of supercontinent Rodinia, which had formed in the mid-Stenian, occurred during this period, starting from 900 to 850 Mya.

↓ Explore More Topics
In this Dossier

Mesoproterozoic in the context of Proterozoic

The Proterozoic (IPA: /ˌprtərəˈzɪk, ˌprɒt-, -ər-, -trə-, -tr-/ PROH-tər-ə-ZOH-ik, PROT-, -⁠ər-oh-, -⁠trə-, -⁠troh-) is the third of the four geologic eons of Earth's history, spanning the time interval from 2500 to 538.8 Ma, and is the longest eon of Earth's geologic time scale. It is preceded by the Archean and followed by the Phanerozoic, and is the most recent part of the Precambrian "supereon".

The Proterozoic is subdivided into three geologic eras (from oldest to youngest): the Paleoproterozoic, Mesoproterozoic and Neoproterozoic. It covers the time from the appearance of free oxygen in Earth's atmosphere to just before the proliferation of complex life on the Earth during the Cambrian Explosion. The name Proterozoic combines two words of Greek origin: protero- meaning "former, earlier", and -zoic, meaning "of life".

↑ Return to Menu

Mesoproterozoic in the context of Neoproterozoic

The Neoproterozoic is the last of the three geologic eras of the Proterozoic eon, spanning from 1 billion to 538.8 million years ago, and is the last era of the Precambrian "supereon". It is preceded by the Mesoproterozoic era and succeeded by the Paleozoic era of the Phanerozoic eon, and is further subdivided into three periods, the Tonian, Cryogenian and Ediacaran.

One of the most severe glaciation events known in the geologic record occurred during the Cryogenian period of the Neoproterozoic, when global ice sheets may have reached the equator and created a "Snowball Earth" lasting about 100 million years. The earliest fossils of complex life are found in the Tonian period in the form of Otavia, a primitive sponge, and the earliest fossil evidence of metazoan radiation are found in the Ediacaran period, which included the namesaked Ediacaran biota as well as the oldest definitive cnidarians and bilaterians in the fossil record.

↑ Return to Menu

Mesoproterozoic in the context of Platform (geology)

In geology, platform is a craton covered with sediments. It can be classified into the following groups: a "protoplatform" of metamorphosed sediments at the bottom, a "quasiplatform" of slightly deformed sediments, a "cataplatform", and an "orthoplatform" at the top. The Mesoproterozoic Jotnian sediments of the Baltic area are examples of a "quasiplatform". The post-Ordovician rocks of the South American Platform are examples of an orthoplatform.

↑ Return to Menu

Mesoproterozoic in the context of Stenian

The Stenian Period (/ˈstni.ən/ STEE-nee-ən, from Ancient Greek: στενός, romanizedstenós, meaning "narrow") is the final geologic period in the Mesoproterozoic Era and lasted from 1200 Mya to 1000 Mya (million years ago). Instead of being based on stratigraphy, these dates are defined chronometrically. The name derives from narrow polymetamorphic belts formed over this period. It is preceded by the Ectasian Period and followed by the Neoproterozoic era and the Tonian period.

The supercontinent Rodinia assembled during the Stenian. It would last into the Tonian period before breaking up in the Cryogenian.

↑ Return to Menu

Mesoproterozoic in the context of Rodinia

Rodinia (from the Russian родина, rodina, meaning "motherland, birthplace") was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago (Ga) and broke up 750–633 million years ago (Ma). Valentine & Moores 1970 were probably the first to recognise a Precambrian supercontinent, which they named "Pangaea I." It was renamed "Rodinia" by McMenamin & McMenamin 1990, who also were the first to produce a plate reconstruction and propose a temporal framework for the supercontinent.

Rodinia formed at c. 1.23 Ga by accretion and collision of fragments produced by breakup of an older supercontinent, Columbia, assembled by global-scale 2.0–1.8 Ga collisional events. Rodinia broke up in the Neoproterozoic, with its continental fragments reassembled to form Pannotia 633–573 Ma. In contrast with Pannotia, little is known about Rodinia's configuration and geodynamic history. Paleomagnetic evidence provides some clues to the paleolatitude of individual pieces of the Earth's crust, but not to their longitude, which geologists have pieced together by comparing similar geologic features, often now widely dispersed.

↑ Return to Menu

Mesoproterozoic in the context of Geology of Namibia

The geology of Namibia encompasses rocks of Paleoproterozoic, Mesoproterozoic and Neoproterozoic and Paleozoic to Cenozoic age. About 46% of the countryʼs surface are bedrock exposure, while the remainder is covered by the young overburden sediments of the Kalahari and Namib deserts.

The country is famous for its mineral deposits of Tsumeb, as well as many geological sites of interest, from paleontological, geomorphological and volcanic character. Due to the exposure of the formations in a desert climate and the former German colony, the geology of Namibia is relatively well studied compared to the more tropical less exposed northern neighbors.

↑ Return to Menu

Mesoproterozoic in the context of Arabian-Nubian Shield

The Arabian-Nubian Shield (ANS) is an exposure of Precambrian crystalline rocks on the flanks of the Red Sea. The crystalline rocks are mostly Neoproterozoic in age. Geographically – and from north to south – the ANS includes parts of Israel, Jordan, Egypt, Saudi Arabia, Sudan, Eritrea, Ethiopia, Yemen, and Somalia. The ANS in the north is exposed as part of the Sahara Desert and Arabian Desert, and in the south in the Ethiopian Highlands, Asir province of Arabia and Yemen Highlands.

The ANS was the site of some of man's earliest geologic efforts, principally by the ancient Egyptians to extract gold from the rocks of Egypt and NE Sudan. This was the most easily worked of all metals and does not tarnish. All of the gold deposits in Egypt and northern Sudan were found and exploited by Egyptians. The earliest preserved geological map was made in 1150 BCE to show the location of gold deposits in Eastern Egypt; it is known as the Turin papyrus. New gold discoveries have been found in Sudan, Eritrea, and Saudi Arabia.

↑ Return to Menu

Mesoproterozoic in the context of Eratosthenian

The Eratosthenian period in the lunar geologic timescale runs from 3,200 million years ago to 1,100 million years ago. It is named after the crater Eratosthenes, which displays characteristics typical of craters of this age, including a surface that is not significantly eroded by subsequent impacts, but which also does not possess a ray system. The massive basaltic volcanism of the Imbrian period tapered off and ceased during this long span of lunar time. The youngest lunar lava flows identified from orbital images are tentatively placed near the end of this period.

Its equivalent on Earth consists of most of the Mesoarchean and Neoarchean eras (Archean eon), Paleoproterozoic and Mesoproterozoic eras (Proterozoic eon).

↑ Return to Menu