Radiation sickness in the context of Committed dose


Radiation sickness in the context of Committed dose

Radiation sickness Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Radiation sickness in the context of "Committed dose"


⭐ Core Definition: Radiation sickness

Acute radiation syndrome (ARS), also known as radiation sickness or radiation poisoning, is a collection of health effects that are caused by being exposed to high amounts of ionizing radiation in a short period of time. Symptoms can start within an hour of exposure, and can last for several months. Early symptoms are usually nausea, vomiting and loss of appetite. In the following hours or weeks, initial symptoms may appear to improve, before the development of additional symptoms, after which either recovery or death follows.

ARS involves a total dose of greater than 0.7 Gy (70 rad), that generally occurs from a source outside the body, delivered within a few minutes. Sources of such radiation can occur accidentally or intentionally. They may involve nuclear reactors, cyclotrons, certain devices used in cancer therapy, nuclear weapons, or radiological weapons. It is generally divided into three types: bone marrow, gastrointestinal, and neurovascular syndrome, with bone marrow syndrome occurring at 0.7 to 10 Gy, and neurovascular syndrome occurring at doses that exceed 50 Gy. The cells that are most affected are generally those that are rapidly dividing. At high doses, this causes DNA damage that may be irreparable. Diagnosis is based on a history of exposure and symptoms. Repeated complete blood counts (CBCs) can indicate the severity of exposure.

↓ Menu
HINT:

👉 Radiation sickness in the context of Committed dose

The committed dose in radiological protection is a measure of the stochastic health risk due to an intake of radioactive material into the human body. Stochastic in this context is defined as the probability of cancer induction and genetic damage, due to low levels of radiation. The SI unit of measure is the sievert.

A committed dose from an internal source represents the same effective risk as the same amount of effective dose applied uniformly to the whole body from an external source, or the same amount of equivalent dose applied to part of the body. The committed dose is not intended as a measure for deterministic effects, such as radiation sickness, which are defined as the severity of a health effect which is certain to happen.

↓ Explore More Topics
In this Dossier

Radiation sickness in the context of Non-ionizing radiation

Non-ionizing (or non-ionising) radiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum (photon energy) to ionize atoms or molecules—that is, to completely remove an electron from an atom or molecule. Instead of producing charged ions when passing through matter, non-ionizing electromagnetic radiation has sufficient energy only for excitation (the movement of an electron to a higher energy state). Non-ionizing radiation is not a significant health risk except in circumstances of prolonged exposure to higher frequency non-ionizing radiation or high power densities as may occur in laboratories and industrial workplaces. Non-ionizing radiation is used in various technologies, including radio broadcasting, telecommunications, medical imaging, and heat therapy.

In contrast, ionizing radiation has a higher frequency and shorter wavelength than non-ionizing radiation, and can be a serious health hazard: exposure to it can cause burns, radiation sickness, many kinds of cancer, and genetic damage. Using ionizing radiation requires elaborate radiological protection measures, which in general are not required with non-ionizing radiation.

View the full Wikipedia page for Non-ionizing radiation
↑ Return to Menu

Radiation sickness in the context of Nuclear explosion

A nuclear explosion is an explosion that occurs as a result of the rapid release of energy from a high-speed nuclear reaction. The driving reaction may be nuclear fission or nuclear fusion or a multi-stage cascading combination of the two, though to date all fusion-based weapons have used a fission device to initiate fusion, and a pure fusion weapon remains a hypothetical device. Nuclear explosions are used in nuclear weapons and nuclear testing.

Nuclear explosions are extremely destructive compared to conventional (chemical) explosives, because of the vastly greater energy density of nuclear fuel compared to chemical explosives. They are often associated with mushroom clouds, since any large atmospheric explosion can create such a cloud. Nuclear explosions produce high levels of ionizing radiation and radioactive debris that is harmful to humans and can cause moderate to severe skin burns, eye damage, radiation sickness, radiation-induced cancer and possible death depending on how far a person is from the blast radius. Nuclear explosions can also have detrimental effects on the climate, lasting from months to years. A small-scale nuclear war could release enough particles into the atmosphere to cause the planet to cool and cause crops, animals, and agriculture to disappear across the globe—an effect named nuclear winter.

View the full Wikipedia page for Nuclear explosion
↑ Return to Menu

Radiation sickness in the context of Castle Bravo

Castle Bravo was the first in a series of high-yield thermonuclear weapon design tests conducted by the United States at Bikini Atoll, Marshall Islands, as part of Operation Castle. Detonated on 1 March 1954, the device remains the most powerful nuclear device ever detonated by the United States and the first lithium deuteride-fueled thermonuclear weapon tested using the Teller–Ulam design. Castle Bravo's yield was 15 megatons of TNT [Mt] (63 PJ), 2.5 times the predicted 6 Mt (25 PJ), due to unforeseen additional reactions involving lithium-7, which led to radioactive contamination in the surrounding area.

Radioactive nuclear fallout, the heaviest of which was in the form of pulverized surface coral from the detonation, fell on residents of Rongelap and Utirik atolls, while the more particulate and gaseous fallout spread around the world. The inhabitants of the islands were evacuated three days later and suffered radiation sickness. Twenty-three crew members of the Japanese fishing vessel Daigo Fukuryū Maru ("Lucky Dragon No. 5") were also contaminated by the heavy fallout, experiencing acute radiation syndrome, including the death six months later of Kuboyama Aikichi, the boat's chief radioman. The blast incited a strong international reaction over atmospheric thermonuclear testing.

View the full Wikipedia page for Castle Bravo
↑ Return to Menu

Radiation sickness in the context of Shark liver oil

Shark liver oil is an oil obtained from the livers of sharks. It has been used for centuries as a folk remedy to promote the healing of wounds and as a remedy for respiratory tract and digestive system problems. It is still promoted as a dietary supplement, and additional claims have been made that it can treat other maladies such as cancer, HIV, radiation sickness, swine flu, and the common cold. To date, none of these claims has been medically validated and shark liver oil (alone) is not a medication prescribed or utilized by American physicians. However, it is a component of some moisturizing skin lotions and hemorrhoid medications.

View the full Wikipedia page for Shark liver oil
↑ Return to Menu

Radiation sickness in the context of Leukocytosis

Leukocytosis is a condition in which the white cell (leukocyte) count is above the normal range in the blood. It is frequently a sign of an inflammatory response, most commonly the result of infection, but may also occur following certain parasitic infections or bone tumors as well as leukemia. It may also occur after strenuous exercise, convulsions such as epilepsy, emotional stress, pregnancy and labor, anesthesia, as a side effect of medication (e.g., lithium), and epinephrine administration. There are five principal types of leukocytosis: neutrophilia (the most common form), lymphocytosis, monocytosis, eosinophilia, and basophilia.

This increase in leukocyte (primarily neutrophils) is usually accompanied by a "left upper shift" in the ratio of immature to mature neutrophils and macrophages. The proportion of immature leukocytes increases due to proliferation and inhibition of granulocyte and monocyte precursors in the bone marrow which is stimulated by several products of inflammation including C3a and G-CSF.Although it may indicate illness, leukocytosis is considered a laboratory finding instead of a separate disease. This classification is similar to that of fever, which is also a test result instead of a disease."Right shift" in the ratio of immature to mature neutrophils is considered with reduced count or lack of "young neutrophils" (metamyelocytes, and band neutrophils) in blood smear, associated with the presence of "giant neutrophils". This fact shows suppression of bone marrow activity, as a hematological sign specific for pernicious anemia and radiation sickness.

View the full Wikipedia page for Leukocytosis
↑ Return to Menu