Quantum tunnelling in the context of Potential barrier


Quantum tunnelling in the context of Potential barrier

Quantum tunnelling Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Quantum tunnelling in the context of "Potential barrier"


⭐ Core Definition: Quantum tunnelling

In physics, quantum tunnelling, barrier penetration, or simply tunnelling is a quantum mechanical phenomenon in which an object such as an electron or atom passes through a potential energy barrier that, according to classical mechanics, should not be passable due to the object not having sufficient energy to pass or surmount the barrier.

Tunnelling is a consequence of the wave nature of matter and quantum indeterminacy. The quantum wave function describes the states of a particle or other physical system and wave equations such as the Schrödinger equation describe their evolution. In a system with a short, narrow potential barrier, a small part of wavefunction can appear outside of the barrier representing a probability for tunnelling through the barrier.

↓ Menu
HINT:

In this Dossier

Quantum tunnelling in the context of Symmetry breaking

In physics, symmetry breaking is a phenomenon where a disordered but symmetric state collapses into an ordered, but less symmetric state. This collapse is often one of many possible bifurcations that a particle can take as it approaches a lower energy state. Due to the many possibilities, an observer may assume the result of the collapse to be arbitrary. This phenomenon is fundamental to quantum field theory (QFT), and further, contemporary understandings of physics. Specifically, it plays a central role in the Glashow–Weinberg–Salam model which forms part of the Standard Model modelling the electroweak sector.

In an infinite system (Minkowski spacetime) symmetry breaking occurs, however in a finite system (that is, any real super-condensed system), the system is less predictable, but in many cases quantum tunneling occurs. Symmetry breaking and tunneling relate through the collapse of a particle into non-symmetric state as it seeks a lower energy.

View the full Wikipedia page for Symmetry breaking
↑ Return to Menu

Quantum tunnelling in the context of Zener diode

A Zener diode is a type of diode designed to exploit the Zener effect to affect electric current to flow against the normal direction from anode to cathode, when the voltage across its terminals exceeds a certain characteristic threshold, the Zener voltage.

Zener diodes are manufactured with a variety of Zener voltages, including variable devices. Some types have an abrupt, heavily doped p–n junction with a low Zener voltage, in which case the reverse conduction occurs due to electron quantum tunnelling in the short distance between p and n regions. Diodes with a higher Zener voltage have more lightly doped junctions, causing their mode of operation to involve avalanche breakdown. Both breakdown types are present in Zener diodes with the Zener effect predominating at lower voltages and avalanche breakdown at higher voltages.

View the full Wikipedia page for Zener diode
↑ Return to Menu

Quantum tunnelling in the context of EEPROM

EEPROM or EPROM (electrically erasable programmable read-only memory) is a type of non-volatile memory. It is used in computers, usually integrated in microcontrollers such as smart cards and remote keyless systems, or as a separate chip device, to store relatively small amounts of data by allowing individual bytes to be erased and reprogrammed.

EEPROMs are organized as arrays of floating-gate transistors. EEPROMs can be programmed and erased in-circuit, by applying special programming signals. Originally, EEPROMs were limited to single-byte operations, which made them slower, but modern EEPROMs allow multi-byte page operations. An EEPROM has a limited life for erasing and reprogramming, reaching a million operations in modern EEPROMs. In an EEPROM that is frequently reprogrammed, the life of the EEPROM is an important design consideration.

View the full Wikipedia page for EEPROM
↑ Return to Menu

Quantum tunnelling in the context of George Gamow

George Gamow (sometimes Gammoff; born Georgiy Antonovich Gamov; Russian: Гео́ргий Анто́нович Га́мов; March 4 [O.S. February 20] 1904 – August 19, 1968) was a Soviet and American polymath, theoretical physicist and cosmologist. He was an early advocate and developer of Georges Lemaître's Big Bang theory. Gamow discovered a theoretical explanation of alpha decay by quantum tunneling, invented the liquid drop model (the first mathematical model of the atomic nucleus), worked on radioactive decay, star formation, stellar nucleosynthesis, Big Bang nucleosynthesis (which he collectively called nucleocosmogenesis), and predicted the existence of the cosmic microwave background radiation and molecular genetics. Gamow was a key figure in the development and understanding of quantum tunneling.

In his middle and late career, Gamow directed much of his attention to teaching and wrote popular books on science, including One Two Three... Infinity and the Mr Tompkins series of books (1939–1967). Some of his books remain in print more than a half-century after their original publication. The George Gamow Memorial Lectures at the University of Colorado at Boulder are given in his honor.

View the full Wikipedia page for George Gamow
↑ Return to Menu