Potential barrier in the context of Quantum tunnelling


Potential barrier in the context of Quantum tunnelling

Potential barrier Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Potential barrier in the context of "Quantum tunnelling"


⭐ Core Definition: Potential barrier

In quantum mechanics, the rectangular (or, at times, square) potential barrier is a standard one-dimensional problem that demonstrates the phenomena of wave-mechanical tunneling (also called "quantum tunneling") and wave-mechanical reflection. The problem consists of solving the one-dimensional time-independent Schrödinger equation for a particle encountering a rectangular potential energy barrier. It is usually assumed, as here, that a free particle impinges on the barrier from the left.

Although classically a particle behaving as a point mass would be reflected if its energy is less than , a particle actually behaving as a matter wave has a non-zero probability of penetrating the barrier and continuing its travel as a wave on the other side. In classical wave-physics, this effect is known as evanescent wave coupling. The likelihood that the particle will pass through the barrier is given by the transmission coefficient, whereas the likelihood that it is reflected is given by the reflection coefficient. Schrödinger's wave-equation allows these coefficients to be calculated.

↓ Menu
HINT:

In this Dossier

Potential barrier in the context of Quantum tunneling

In physics, quantum tunnelling, barrier penetration, or simply tunnelling is a quantum mechanical phenomenon in which an object such as an electron or atom passes through a potential energy barrier that, according to classical mechanics, should not be passable due to the object not having sufficient energy to pass or surmount the barrier.

Tunnelling is a consequence of the wave nature of matter and quantum indeterminacy. The quantum wave function describes the states of a particle or other physical system and wave equations such as the Schrödinger equation describe their evolution. In a system with a short, narrow potential barrier, a small part of wavefunction can appear outside of the barrier representing a probability for tunnelling through the barrier.

View the full Wikipedia page for Quantum tunneling
↑ Return to Menu

Potential barrier in the context of Hot electron

Hot carrier injection (HCI) is a phenomenon in solid-state electronic devices where an electron or a "hole" gains sufficient kinetic energy to overcome a potential barrier necessary to break an interface state. The term "hot" refers to the effective temperature used to model carrier density, not to the overall temperature of the device. Since the charge carriers can become trapped in the gate dielectric of a MOS transistor, the switching characteristics of the transistor can be permanently changed. Hot-carrier injection is one of the mechanisms that adversely affects the reliability of semiconductors of solid-state devices.

View the full Wikipedia page for Hot electron
↑ Return to Menu