Quantum computing in the context of Quantum memory


Quantum computing in the context of Quantum memory

Quantum computing Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Quantum computing in the context of "Quantum memory"


⭐ Core Definition: Quantum computing

A quantum computer is a (real or theoretical) computer that exploits superposed and entangled states. Quantum computers can be viewed as sampling from quantum systems that evolve in ways that may be described as operating on an enormous number of possibilities simultaneously, though still subject to strict computational constraints. By contrast, ordinary ("classical") computers operate according to deterministic rules. (A classical computer can, in principle, be replicated by a classical mechanical device, with only a simple multiple of time cost. On the other hand (it is believed), a quantum computer would require exponentially more time and energy to be simulated classically.) It is widely believed that a quantum computer could perform some calculations exponentially faster than any classical computer. For example, a large-scale quantum computer could break some widely used public-key cryptographic schemes and aid physicists in performing physical simulations. However, current hardware implementations of quantum computation are largely experimental and only suitable for specialized tasks.

The basic unit of information in quantum computing, the qubit (or "quantum bit"), serves the same function as the bit in ordinary or "classical" computing. However, unlike a classical bit, which can be in one of two states (a binary), a qubit can exist in a linear combination of two states known as a quantum superposition. The result of measuring a qubit is one of the two states given by a probabilistic rule. If a quantum computer manipulates the qubit in a particular way, wave interference effects amplify the probability of the desired measurement result. The design of quantum algorithms involves creating procedures that allow a quantum computer to perform this amplification.

↓ Menu
HINT:

👉 Quantum computing in the context of Quantum memory

In quantum computing, a quantum memory is the quantum-mechanical version of ordinary computer memory. Whereas ordinary memory stores information as binary states (represented by "1"s and "0"s), quantum memory stores a quantum state for later retrieval. These states hold useful computational information known as qubits. Unlike the classical memory of everyday computers, the states stored in quantum memory can be in a quantum superposition, giving much more practical flexibility in quantum algorithms than classical information storage.

Quantum memory is essential for the development of many devices in quantum information processing, including a synchronization tool that can match the various processes in a quantum computer, a quantum gate that maintains the identity of any state, and a mechanism for converting predetermined photons into on-demand photons. Quantum memory can be used in many aspects, such as quantum computing and quantum communication. Continuous research and experiments have enabled quantum memory to realize the storage of qubits.

↓ Explore More Topics
In this Dossier

Quantum computing in the context of Google

Google LLC (/ˈɡ.ɡəl/ , GOO-gəl) is an American multinational technology corporation focused on information technology, online advertising, search engine technology, email, cloud computing, software, quantum computing, e-commerce, consumer electronics, and artificial intelligence (AI). It has been referred to as "the most powerful company in the world" by the BBC, and is one of the world's most valuable brands. Google's parent company Alphabet Inc. has been described as a Big Tech company.

Google was founded on September 4, 1998, by American computer scientists Larry Page and Sergey Brin. Together, they own about 14% of its publicly listed shares and control 56% of its stockholder voting power through super-voting stock. The company went public via an initial public offering (IPO) in 2004. In 2015, Google was reorganized as a wholly owned subsidiary of Alphabet Inc. Google is Alphabet's largest subsidiary and is a holding company for Alphabet's internet properties and interests. Sundar Pichai was appointed CEO of Google on October 24, 2015, replacing Larry Page, who became the CEO of Alphabet. On December 3, 2019, Pichai also became the CEO of Alphabet.

View the full Wikipedia page for Google
↑ Return to Menu

Quantum computing in the context of Quantum technology

Quantum engineering is the development of technology that capitalizes on the laws of quantum mechanics. This type of engineering uses quantum mechanics to develop technologies such as quantum sensors and quantum computers.

View the full Wikipedia page for Quantum technology
↑ Return to Menu

Quantum computing in the context of Quantum information

Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information science, and can be manipulated using quantum information processing techniques. Quantum information refers to both the technical definition in terms of von Neumann entropy and the general computational term.

It is an interdisciplinary field that involves quantum mechanics, computer science, information theory, philosophy and cryptography among other fields. Its study is also relevant to disciplines such as cognitive science, psychology and neuroscience. Its main focus is in extracting information from matter at the microscopic scale. Observation in science is one of the most important ways of acquiring information and measurement is required in order to quantify the observation, making this crucial to the scientific method. In quantum mechanics, due to the uncertainty principle, non-commuting observables cannot be precisely measured simultaneously, as an eigenstate in one basis is not an eigenstate in the other basis. According to the eigenstate–eigenvalue link, an observable is well-defined (definite) when the state of the system is an eigenstate of the observable. Since any two non-commuting observables are not simultaneously well-defined, a quantum state can never contain definitive information about both non-commuting observables.

View the full Wikipedia page for Quantum information
↑ Return to Menu

Quantum computing in the context of Qubit

In quantum computing, a qubit (/ˈkjuːbɪt/) or quantum bit is a basic unit of quantum information; a binary qudit – the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two spin states (left-handed and the right-handed circular polarization) can also be measured as horizontal and vertical linear polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of multiple states simultaneously, a property that is fundamental to quantum mechanics and quantum computing.

View the full Wikipedia page for Qubit
↑ Return to Menu

Quantum computing in the context of David J. Wineland

David Jeffery Wineland (born February 24, 1944) is an American physicist at the Physical Measurement Laboratory of the National Institute of Standards and Technology (NIST). His most notable contributions include the laser cooling of trapped ions and the use of ions for quantum-computing operations. He received the 2012 Nobel Prize in Physics, jointly with Serge Haroche, for "ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems."

View the full Wikipedia page for David J. Wineland
↑ Return to Menu